Soft Robotics in Engineering: Materials, Actuation Technologies, and Control Strategies
Keywords:
soft robotics, functional materials, intelligent controlAbstract
Soft robotics represents a transformative shift in robotic design, emphasizing compliance, adaptability, and safety through the use of deformable materials and bioinspired architectures. This review provides a comprehensive synthesis of recent advancements in soft robotic systems, focusing on three foundational pillars: functional materials, actuation technologies, and control strategies. We examine the development of elastomers, stimuli-responsive polymers, and nanocomposites that enable mechanical flexibility and multifunctionality. Key actuation approaches-including pneumatic, dielectric, thermal, magnetic, and hybrid systems-are analyzed with respect to their efficiency, scalability, and integration challenges. On the control side, we explore both model-based and AI-driven methods, highlighting the need for real-time adaptability and robust sensor feedback. Despite promising progress, major obstacles persist in system-level integration, precision control, and commercial scalability. To address these issues, we identify future research directions such as lightweight energy systems, multimodal feedback, and bioinspired material architectures. This review underscores the importance of interdisciplinary collaboration in advancing soft robotics from laboratory prototypes to practical, real-world applications.References
1. D. Rus, and M. T. Tolley, "Design, fabrication and control of soft robots," Nature, vol. 521, no. 7553, pp. 467-475, 2015. doi: 10.1038/nature14543
2. S. Kim, C. Laschi, and B. Trimmer, "Soft robotics: a bioinspired evolution in robotics," Trends in biotechnology, vol. 31, no. 5, pp. 287-294, 2013. doi: 10.1016/j.tibtech.2013.03.002
3. C. Laschi, B. Mazzolai, and M. Cianchetti, "Soft robotics: Technologies and systems pushing the boundaries of robot abilities," Science robotics, vol. 1, no. 1, p. eaah3690, 2016. doi: 10.1126/scirobotics.aah3690
4. G. M. Whitesides, "Soft robotics," Angewandte Chemie International Edition, vol. 57, no. 16, pp. 4258-4273, 2018. doi: 10.1002/anie.201800907
5. D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, "Soft robotics: Biological inspiration, state of the art, and future research," Applied bionics and biomechanics, vol. 5, no. 3, pp. 99-117, 2008. doi: 10.1155/2008/520417
6. J. Shintake, V. Cacucciolo, D. Floreano, and H. Shea, "Soft robotic grippers," Advanced materials, vol. 30, no. 29, p. 1707035, 2018. doi: 10.1002/adma.201707035
7. C. Della Santina, C. Duriez, and D. Rus, "Model-based control of soft robots: A survey of the state of the art and open challenges," IEEE Control Systems Magazine, vol. 43, no. 3, pp. 30-65, 2023. doi: 10.1109/mcs.2023.3253419
8. M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, "Biomedical applications of soft robotics," Nature Reviews Materials, vol. 3, no. 6, pp. 143-153, 2018. doi: 10.1038/s41578-018-0022-y
9. A. Miriyev, K. Stack, and H. Lipson, "Soft material for soft actuators," Nature communications, vol. 8, no. 1, p. 596, 2017. doi: 10.1038/s41467-017-00685-3
10. S. Li, D. M. Vogt, D. Rus, and R. J. Wood, "Fluid-driven origami-inspired artificial muscles," Proceedings of the National academy of Sciences, vol. 114, no. 50, pp. 13132-13137, 2017. doi: 10.1073/pnas.1713450114
11. N. Elango, and A. A. M. Faudzi, "A review article: investigations on soft materials for soft robot manipulations," The International Journal of Advanced Manufacturing Technology, vol. 80, no. 5, pp. 1027-1037, 2015.
12. H. Zhao, Y. Li, A. Elsamadisi, and R. Shepherd, "Scalable manufacturing of high force wearable soft actuators," Extreme Mechanics Letters, vol. 3, pp. 89-104, 2015. doi: 10.1016/j.eml.2015.02.006
13. Y. Zhao, M. Hua, Y. Yan, S. Wu, Y. Alsaid, and X. He, "Stimuli-responsive polymers for soft robotics," Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 515-545, 2022. doi: 10.1146/annurev-control-042920-014327
14. L. Han, S. Cui, H. Y. Yu, M. Song, H. Zhang, N. Grishkewich, and K. M. C. Tam, "Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems," ACS applied materials & interfaces, vol. 11, no. 47, pp. 44642-44651, 2019.
15. M. Li, A. Pal, A. Aghakhani, A. Pena-Francesch, and M. Sitti, "Soft actuators for real-world applications," Nature Reviews Materials, vol. 7, no. 3, pp. 235-249, 2022. doi: 10.1038/s41578-021-00389-7
16. J. Shintake, S. Rosset, B. Schubert, D. Floreano, and H. Shea, "Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators," Adv. Mater, vol. 28, no. 2, pp. 231-238, 2016. doi: 10.1002/adma.201504264
17. N. Ebrahimi, C. Bi, D. J. Cappelleri, G. Ciuti, A. T. Conn, D. Faivre, and A. Jafari, "Magnetic actuation methods in bio/soft robotics," Advanced Functional Materials, vol. 31, no. 11, p. 2005137, 2021. doi: 10.1002/adfm.202005137
18. H. Wang, M. Totaro, and L. Beccai, "Toward perceptive soft robots: Progress and challenges," Advanced science, vol. 5, no. 9, p. 1800541, 2018. doi: 10.1002/advs.201800541
19. A. Potekhina, and C. Wang, "Review of electrothermal actuators and applications," In Actuators, September, 2019, p. 69. doi: 10.3390/act8040069
20. M. Wehner, R. L. Truby, D. J. Fitzgerald, B. Mosadegh, G. M. Whitesides, J. A. Lewis, and R. J. Wood, "An integrated design and fabrication strategy for entirely soft, autonomous robots," nature, vol. 536, no. 7617, pp. 451-455, 2016. doi: 10.1038/nature19100
21. T. George Thuruthel, Y. Ansari, E. Falotico, and C. Laschi, "Control strategies for soft robotic manipulators: A survey," Soft robotics, vol. 5, no. 2, pp. 149-163, 2018. doi: 10.1089/soro.2017.0007
22. T. G. Thuruthel, B. Shih, C. Laschi, and M. T. Tolley, "Soft robot perception using embedded soft sensors and recurrent neural networks," Science Robotics, vol. 4, no. 26, p. eaav1488, 2019. doi: 10.1126/scirobotics.aav1488
23. A. D. Marchese, R. K. Katzschmann, and D. Rus, "A recipe for soft fluidic elastomer robots," Soft robotics, vol. 2, no. 1, pp. 7-25, 2015. doi: 10.1089/soro.2014.0022
24. P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh, G. M. Whitesides, and C. J. Walsh, "Towards a soft pneumatic glove for hand rehabilitation," In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, November, 2013, pp. 1512-1517.
25. S. Tobin, J. Gaston, V. Aloi, E. Barth, and C. Rucker, "Cosserat Rods with Cross-Sectional Deformation for Soft Robot Modeling," IEEE Robotics and Automation Letters, 2025. doi: 10.1109/lra.2025.3621982

