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Abstract: Business ecosystems, such as supply-chain networks, financial transaction systems, and 

e-commerce platforms, exhibit complex relational structures that challenge traditional machine-

learning models. Although graph neural networks (GNNs) have shown promise in capturing such 

dependencies, existing studies often focus on single domains, rely on static graphs, or lack 

systematic comparison across heterogeneous commercial settings. To address these gaps, this study 

proposes a unified analytical framework that integrates relational embeddedness theory, graph 

representation learning, and dynamic capability perspectives. Using three representative real-world 

scenarios, a retail procurement graph, an AML transaction network, and an e-commerce product 

affinity graph, we evaluate four GNN architectures (GCN, GraphSAGE, GAT, and Temporal-GNN) 

through link prediction, fraud detection, and recommendation tasks. The results show that 

attention-based models outperform others in heterogeneous supplier and transaction environments, 

temporal GNNs better capture evolving fraud patterns, and inductive architectures excel in high-

turnover product graphs. These findings deepen theoretical understanding of relational learning in 

commercial systems and offer practical guidance for deploying GNN-based analytics in 

procurement risk assessment, financial compliance, and personalized recommendation services. 

Keywords: graph neural networks; business relationship mining; supply-chain analytics; fraud 

detection; product affinity modeling 

 

1. Introduction 

Modern business ecosystems, such as supply-chain networks, merchant-client 

transaction systems, and large-scale e-commerce platforms, exhibit increasingly complex 

relational structures [1]. Firms, suppliers, customers, and products are connected through 

multi-layered interactions that form high-dimensional graphs [2]. These relational 

dependencies determine essential business functions including risk monitoring, supplier 

diversification, inventory forecasting, and real-time fraud detection [3]. For example, the 

procurement network of a large retailer such as Walmart contains thousands of suppliers 

and millions of purchase links, where disruptions in a few nodes may propagate across 

the entire network. Similarly, the IEEE-CIS anti-money-laundering (AML) transaction 

dataset reveals dense clusters of merchant-client interactions, in which fraudulent 

behavior is rarely detectable from individual transactions but becomes salient when 

relational patterns are considered [4]. In e-commerce settings, Amazon's product co-view 

and co-purchase networks demonstrate how consumer decisions emerge from 

interconnected item affinities rather than isolated attributes. These examples illustrate the 
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centrality of relational structures in contemporary commercial operations, and the need 

for analytical models capable of capturing such networked behavior. 

While traditional machine-learning techniques have been widely applied to 

commercial prediction tasks, they are inherently limited when dealing with relational 

complexity. Classical approaches such as gradient boosting, logistic regression, or matrix 

factorization generally treat observations as independent units or rely on manually 

engineered features to approximate structural dependencies [5]. However, relationships 

in business graphs are rarely linear or static: supplier reliability evolves over time, 

fraudulent entities adapt their strategies, and product affinity networks shift with 

seasonal or cross-category dynamics [6]. Existing studies using network analysis and 

shallow graph-based models have partially addressed these challenges by incorporating 

centrality metrics or structural heuristics, yet they struggle to model heterogeneous 

interactions, temporal dependencies, and multi-type nodes in large-scale business 

environments [7]. 

Recent advances in graph neural networks (GNNs) have introduced new 

opportunities for commercial analytics by enabling joint learning of node attributes, edge 

semantics, and graph topology. GNNs have demonstrated notable success in tasks such 

as fraud detection, product recommendation, customer segmentation, and supply-chain 

resilience forecasting. Nevertheless, several gaps remain. First, many applications focus 

on single-domain tasks and do not examine how different GNN architectures perform 

across diverse commercial scenarios [8]. Second, most prior studies rely on static graphs, 

overlooking the temporal evolution of business interactions. Third, the literature lacks 

comprehensive comparisons between GNNs and established baselines that are still 

widely used in industry, such as XGBoost or collaborative filtering. Finally, the theoretical 

connection between graph representation learning and business decision-making 

frameworks, such as relational embeddedness or dynamic capabilities, remains 

underdeveloped. 

This study aims to address these gaps by proposing a unified analytical framework 

for evaluating the applicability and performance of graph neural networks in business 

relationship mining. Specifically, we examine three representative cases: (1) supplier-

manufacturer link prediction in a retail procurement network modeled after Walmart-

style open data; (2) fraudulent entity detection within an AML transaction network; and 

(3) product affinity mining in an e-commerce clickstream graph. By comparing graph 

convolutional networks (GCN), graph attention networks (GAT), GraphSAGE, and 

temporal GNN architectures across these scenarios, the study identifies performance 

patterns, architectural strengths, and domain-specific trade-offs. Our methodological 

approach combines literature analysis, multi-case comparison, quantitative model 

benchmarking, and qualitative business interpretation. 

The academic significance of this research lies in its integration of GNN-based 

relational modeling with theories of business networks and data-driven decision-making. 

Practically, the findings inform enterprises on how to select and deploy GNN 

architectures for supply-chain intelligence, risk control, demand prediction, and 

recommendation optimization. Through its multi-scenario evaluation and theoretically 

anchored analysis, this study contributes both methodological clarity and actionable 

insights for the development of next-generation commercial analytics powered by graph 

neural networks. 

2. Literature Review 

Research on graph-based commercial analytics has expanded considerably in recent 

years, driven by the increasing accessibility of network-structured business data and the 

growing maturity of graph learning techniques. The existing literature may be broadly 

categorized into three subfields: (1) graph-based models for business network analysis, (2) 

graph neural networks for commercial prediction tasks, and (3) dynamic and 
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heterogeneous GNNs for evolving market systems. Each strand offers distinct strengths 

while exhibiting important limitations that together reveal a persistent research gap. 

2.1. Graph-Based Business Analytics 

Early studies applied graph-theoretical models to supply chains, transaction 

networks, and product ecosystems. These works highlighted the advantages of relational 

indicators, such as structural centrality, community clustering, or connectivity robustness, 

in evaluating supplier reliability, detecting abnormal merchant clusters, and identifying 

influential products [9]. Such approaches enhanced interpretability and offered useful 

insights into structural vulnerabilities within procurement and financial networks. 

However, the limitations of graph-theoretical models become evident when business 

interactions grow increasingly heterogeneous and dynamic. Traditional metrics cannot 

jointly integrate node attributes, edge semantics, and multi-relational patterns, nor can 

they effectively learn from large-scale, high-dimensional business graphs [10]. 

Comparisons among these models show that while they provide strong explanatory 

power, they lack predictive flexibility and struggle to accommodate temporal variations 

or complex cross-category relationships [11]. The resulting gap lies in the need for models 

capable of both structural reasoning and task-specific prediction. 

This study contributes by integrating graph-theoretical insights with modern GNN 

architectures, enabling predictive analysis without abandoning structural interpretability. 

2.2. Graph Neural Networks for Commercial Prediction 

The second stream of research applies graph neural networks to tasks such as fraud 

detection, churn prediction, cross-category product recommendation, and supply-chain 

link prediction. Studies in this area demonstrate clear advantages: GNNs capture multi-

hop dependencies, integrate heterogeneous features, and outperform classical machine-

learning baselines in sparse or relationally complex environments. Graph attention 

mechanisms further allow models to learn importance weights among neighbors, offering 

partial interpretability [12]. 

Nonetheless, existing research also reveals several shortcomings. Many studies rely 

on static graph snapshots, overlooking the fact that commercial transactions, supplier 

relationships, and consumer behaviors evolve rapidly. Furthermore, comparison across 

different GNN architectures is often limited, making it difficult to assess which model 

families are most suitable for specific business scenarios [13]. Cross-study evaluations 

indicate that while GNNs increase predictive accuracy, they often do so at the cost of 

transparency, computational efficiency, and scalability, factors crucial for enterprise 

deployment. 

The unresolved gap involves the absence of systematic benchmarking of diverse 

GNN architectures under realistic business conditions. Addressing this gap, this study 

conducts a cross-scenario evaluation of multiple GNN models, emphasizing performance 

trade-offs relevant to commercial decision-making. 

2.3. Dynamic and Heterogeneous GNNs for Market Systems 

A more recent line of research explores temporal and heterogeneous GNNs, 

motivated by the multi-stakeholder and multi-relational nature of business ecosystems. 

These models excel at capturing evolving interactions, such as shifting supplier alliances, 

progressive fraud patterns, or seasonally varying product affinities [14]. They also 

support modeling of heterogeneous entities, firms, customers, products, each with unique 

behavioral and structural characteristics. 

Despite these advances, limitations persist. Temporal GNNs impose high 

computational and data requirements, and heterogeneous GNNs may struggle with noisy 

or incomplete business attributes. Comparative findings show that while these models 

excel in complex relational environments, their added sophistication does not always 
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translate into practical gains unless supported by ample, high-quality data [15]. Moreover, 

few studies explicitly relate model behavior to established business theories, leaving gaps 

in interpretive depth. 

The key research gap concerns the lack of integrated analysis connecting dynamic 

graph learning with business-oriented theoretical frameworks. 

By addressing this gap, the present study contributes a unified framework that 

evaluates temporal and heterogeneous GNNs alongside classical architectures and 

connects empirical findings with relational embeddedness and dynamic capability 

perspectives. 

3. Theoretical Framework and Methodology 

To clarify the conceptual basis of this study, Figure 1 illustrates the unified theoretical 

framework underlying our analysis. 

 

Figure 1. Unified Theoretical Framework. 

3.1. Theoretical Framework 

The analytical foundation of this study integrates theories of graph representation 

learning with established perspectives in business network analysis. The framework 

consists of three layers: (1) relational embeddedness theory for modeling business 

interactions, (2) graph learning principles for encoding structure and attributes, and (3) 

dynamic capability perspectives for interpreting temporal change in commercial 

networks. 

3.1.1. Relational Embeddedness and Commercial Networks 

Relational embeddedness theory views firms, suppliers, customers, and products as 

entities embedded within interdependent networks. Business outcomes, such as supplier 

reliability, fraud risk, or cross-category product affinity, are shaped not only by individual 

attributes but also by local and global structural configurations. In procurement networks, 

for instance, suppliers connected to tightly clustered sub-communities often exhibit stable 

performance due to shared certifications, overlapping logistics, or co-procurement 

histories. Likewise, in financial transaction networks, fraudulent merchants frequently 

form dense temporal clusters with repeated micro-transactions. 

These relational features are represented in graph form. Let 
𝐺 = (𝑉, 𝐸, 𝑋) 

denote a business network where 𝑉 is the set of nodes (e.g., suppliers, products, 

merchants), 𝐸  is the set of edges (e.g., transactions, co-purchases, contracts), and 𝑋 ∈

ℝ|𝑉|×𝑑  contains node attributes (e.g., credit score, product category, or transactional 
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statistics). This representation allows relational embeddedness to be operationalized 

mathematically and serves as input for graph learning models. 

3.1.2. Graph Representation Learning 

Graph neural networks generalize neural learning to relational structures by 

aggregating information from neighboring nodes. A general GNN layer can be written as: 

ℎ𝑖
(𝑙+1)

= 𝜎(𝑊(𝑙) ⋅ 𝐴𝐺𝐺{ℎ𝑖
(𝑙)
, ℎ𝑗

(𝑙)
∣ 𝑗 ∈ 𝒩(𝑖)}), 

where 

ℎ𝑖
(𝑙)

 denotes the representation of node 𝑖 at layer 𝑙, 

𝒩(𝑖) is the set of neighbors of node 𝑖, 

𝑊(𝑙) is a trainable weight matrix, 

𝜎(⋅) is an activation function, and 

AGG is an aggregation operator such as mean, sum, or attention-weighted sum. 

Different architectural variations emphasize different relational properties. 

Graph Convolutional Networks (GCN) emphasize local smoothness and perform 

well on structurally homogeneous commercial graphs such as supplier co-procurement 

networks. 

Graph Attention Networks (GAT) introduce learnable attention coefficients 𝛼𝑖𝑗 , 

enabling models to identify key upstream suppliers or high-risk transactional neighbors. 

GraphSAGE supports inductive generalization, making it suitable for e-commerce 

product graphs where new products constantly emerge. 

Temporal GNNs incorporate timestamps ttt and dynamic edges 𝐸(𝑡), enabling the 

modeling of evolving fraud patterns and shifting product preferences. 

3.1.3. Dynamic Capability Perspective 

The dynamic capability lens provides theoretical grounding for interpreting 

temporal changes observed in business networks. It emphasizes the ability of firms to 

sense, adapt, and respond to shifting environments. In this framework, commercial 

relationships are not static but evolve as firms adjust their partnerships, products, or risk 

strategies. Temporal GNNs, capable of capturing evolving edge sequences 𝑒𝑖𝑗(𝑡) , 

naturally align with this theoretical stance. 

By combining relational embeddedness, graph representation learning, and dynamic 

capability perspectives, the study constructs a unified framework linking graph-level 

representations with business decision-making logic. 

3.2. Research Methodology 

3.2.1. Case Selection Rationale 

This study examines three representative commercial scenarios chosen for their 

structural diversity and practical relevance. The first is a retail supply-chain network 

derived from Walmart-style open procurement data, where suppliers and product 

categories form a sparse hierarchical graph suited for link prediction. The second is a 

financial transaction network based on the IEEE-CIS AML dataset, characterized by 

heterogeneous, rapidly evolving merchant-client interactions, an ideal setting for 

evaluating temporal and attention-based GNNs. The third is an e-commerce product 

affinity graph constructed from Amazon clickstream and co-purchase data, whose dense 

communities support testing of inductive representation learning. Together, these cases 

cover supply-chain, financial, and consumer-behavior networks, enabling systematic 

cross-scenario evaluation of model performance. 

3.2.2. Data Preprocessing and Graph Construction 

Data preprocessing follows a unified workflow. Entity identifiers, such as supplier 

codes, merchant IDs, and product SKUs, are normalized to ensure consistent node 
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representation. Edges are generated according to domain-specific interaction signals: co-

procurement relationships in the supply-chain case, time-stamped monetary flows in the 

AML network, and co-view or co-purchase behaviors in the e-commerce graph. Node 

features reflect commercially relevant attributes, including on-time delivery rate, 

transactional frequency, risk indicators, category embeddings, and user engagement 

metrics. For dynamic graphs, edges 𝑒𝑖𝑗(𝑡)  are chronologically ordered to construct 

temporal sequences. The final datasets are represented as 𝐺1 = (𝑉1, 𝐸1, 𝑋1), 𝐺2 =

(𝑉2, 𝐸2(𝑡), 𝑋2) , and 𝐺3 = (𝑉3, 𝐸3, 𝑋3) , capturing the structural differences necessary for 

robust comparison. 

3.2.3. Model Implementation 

Four GNN architectures are implemented. The GCN serves as a baseline 

emphasizing structural smoothing; GraphSAGE supports inductive inference, fitting the 

e-commerce context with continually added items; the GAT introduces learnable attention 

weights, useful for noisy heterogeneous networks such as AML transactions; and 

temporal GNNs model evolving interactions through recurrent or attention-based 

mechanisms. Models are trained using a binary cross-entropy loss: 

ℒ = −∑ 𝑦𝑖𝑗(𝑖,𝑗) log 𝑦̂𝑖𝑗 + (1 − 𝑦𝑖𝑗) log( 1 − 𝑦̂𝑖𝑗), 𝐿 = −(𝑖, 𝑗), 

where 𝑦𝑖𝑗  is the ground-truth label and 𝑦̂𝑖𝑗  the predicted probability. 

Hyperparameters, including learning rate 𝜂 , embedding dimension 𝑑 , and attention 

heads 𝐾, are optimized via grid search to ensure fair comparison across architectures. 

3.2.4. Evaluation Metrics 

Model performance is assessed using metrics aligned with each task. AUC and F1-

score measure fraud detection and link prediction accuracy, while Precision@K evaluates 

the relevance of top-ranked product recommendations. Stability is examined through the 

standard deviation of repeated runs. Temporal GNNs are additionally evaluated using 

time-aware accuracy: 

𝑇𝐴 − 𝐴𝑐𝑐 =
1

𝑇
∑ 𝕀𝑇
𝑡=1 (𝑦̂𝑡 = 𝑦𝑡), 

which captures the consistency of predictions across evolving transaction sequences. 

This multi-metric approach ensures balanced assessment of ranking performance, 

classification effectiveness, and temporal robustness. 

3.2.5. Business Interpretation and Comparative Analysis 

Business-oriented interpretation complements quantitative evaluation. Link-path 

tracing highlights structurally influential suppliers or suspicious merchant clusters, while 

attention-weight visualization reveals which neighbors contribute most strongly to 

predictions, offering insights into risk propagation and consumer preference patterns. 

Cross-case comparison links performance differences to graph topology, for example, the 

advantage of attention-based models in heterogeneous networks and the superiority of 

temporal GNNs in settings with fast-changing transactional behavior. This combined 

analytical strategy ensures that findings remain both computationally rigorous and 

commercially interpretable, supporting practical applications in supply-chain intelligence, 

financial risk control, and personalized recommendation. 

4. Findings and Discussion 

This section synthesizes empirical results from the three commercial graph scenarios 

and interprets them through the theoretical lenses established earlier. The findings 

highlight how graph neural networks, particularly attention-based and temporal variants, 

capture structural and temporal dependencies that traditional machine-learning models 

overlook. Four figures summarize key patterns across supply-chain, financial transaction, 

and e-commerce product graphs. 
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4.1. Structural Learning Performance in Supply-Chain Networks 

Results from the Walmart-style supplier-manufacturer procurement graph show that 

graph neural networks substantially outperform conventional baselines in link prediction 

tasks. Among all tested architectures, the GAT model achieves the highest AUC, 

improving predictive accuracy by approximately 15-18% over GCN and GraphSAGE and 

by more than 30% relative to logistic regression and matrix factorization. This 

performance advantage reflects the ability of attention mechanisms to capture asymmetric 

relational importance, particularly in cases where suppliers with frequent co-procurement 

histories or overlapping logistics hubs exert disproportionate influence on downstream 

manufacturers. As illustrated in Figure 2, GAT consistently outperforms other model 

families across both AUC and F1 metrics, demonstrating its effectiveness in extracting 

multi-hop structural signals embedded in procurement networks. 

 

Figure 2. Supplier-Manufacturer Link Prediction Accuracy Across Models. 

These findings align with relational embeddedness theory, which posits that supply-

chain stability is shaped by the density, redundancy, and cohesion of upstream-

downstream ties. GAT's superior performance indicates that structural signals, such as 

sub-community membership and local supplier triads, carry significant predictive value. 

Classical baselines simplify these dependencies into engineered features, losing multi-hop 

nuance. 

Compared with existing research that applies static heuristics (e.g., centrality scores) 

for supplier evaluation, the present study shows that neural relational aggregation 

delivers more granular insights, particularly in sparse but hierarchically layered networks. 

The improved prediction accuracy has practical implications for procurement resilience: 

disruptions can be identified earlier when emerging supplier-manufacturer relationships 

are accurately modeled. 

4.2. Temporal Fraud Patterns in Financial Transaction Networks 

The AML transaction network demonstrates the clearest advantage for temporal 

GNNs, especially in rapidly evolving fraud scenarios. Fraudulent merchants frequently 

adapt behavioral patterns by altering transaction timing, client routing, or micro-

transaction strategies. Temporal GNNs capture these dynamics through time-indexed 

edge sequences 𝑒𝑖𝑗(𝑡), enabling detection of subtle anomalies that static models miss. As 
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shown in Figure 3, the temporal model consistently outperforms both static GNN and 

GAT baselines over successive time windows, achieving the highest time-aware accuracy. 

 

Figure 3. Temporal vs. Static Model Performance in AML Fraud Detection. 

The temporal model achieves the highest time-aware accuracy, improving TA-Acc 

by 12-20% relative to GAT and static GCN. Notably, fraud clusters exhibit distinctive 

temporal signatures, short bursts of micro-payments or sudden concentration of client IDs. 

Standard GNNs treat such periods as aggregated edges, losing sequence-level risk cues. 

Comparative analysis confirms that existing fraud research relying on transaction-

level features or aggregated histories fails to capture relational evolution. By contrast, this 

study provides empirical evidence that the dynamic capability perspective, traditionally 

applied to firm strategy, also explains fraud pattern adaptation. The ability of temporal 

GNNs to "sense-adapt-respond" to evolving patterns reinforces the theoretical integration 

proposed earlier. 

4.3. Community-Level Product Affinity in E-Commerce Networks 

In the e-commerce product graph, all GNN variants outperform collaborative 

filtering and matrix factorization baselines, yet GraphSAGE offers the best balance 

between accuracy and scalability. Because e-commerce platforms continuously introduce 

new items, inductive learning becomes essential, and GraphSAGE's neighborhood 

sampling mechanism enables the model to embed unseen products without full retraining. 

As illustrated in Figure 4, GraphSAGE achieves the highest Precision@10 and 

Precision@20 scores across all model families, improving Precision@10 by approximately 

9-12% compared with GCN and by more than 20% relative to collaborative filtering. This 

performance advantage highlights the role of community-level product affinity: items 

embedded within densely interconnected co-view clusters exhibit stronger substitutive or 

complementary relationships that GNNs capture more effectively. 
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Figure 4. Product Recommendation Precision@K Across Model Families. 

In contrast, GAT, while demonstrating strong performance in heterogeneous 

transaction networks, shows only marginal gains in this domain. This outcome likely 

reflects the relatively homogeneous neighbor quality within product graphs, where 

attention weighting contributes less additional value. This result diverges from 

assumptions in prior studies that treat attention-based models as universally superior. 

Instead, the findings reveal a domain-specific trade-off: attention mechanisms are most 

beneficial when relational importance varies sharply across neighbors, whereas inductive 

models excel in dense and regularly structured product ecosystems. 

4.4. Cross-Scenario Comparison and Theoretical Interpretation 

To synthesize results across the three cases, Figure 5 summarizes the performance 

landscape of the four GNN architectures. The patterns validate the theoretical assumption 

that graph topology and temporal volatility jointly determine model suitability. 

 

Figure 5. Comparative Strengths of GNN Architectures Across Three Business Graphs. 

Four cross-scenario insights emerge: (1) Attention mechanisms excel in 

heterogeneous relational contexts. GAT's superiority in AML and supply-chain networks 

demonstrates that learning neighbor importance is essential when edges encode 



Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS 

 

Vol. 3 (2026) 296  

asymmetric influence (e.g., risky merchants or dominant suppliers). (2) Temporal GNNs 

dominate in high-volatility environments. The AML network exhibits rapid structural 

changes; temporal modeling enhances sensitivity to relational evolution and aligned 

closely with the dynamic capability framework. (3) GraphSAGE is most effective in 

inductive and dense community graphs. Its sampling strategy offers scalability and 

robustness, making it well suited for e-commerce environments with frequent node 

turnover. (4) GCN remains a strong baseline for structurally homogeneous graphs. 

Although surpassed by advanced models, GCN performs competitively in well-

structured networks, demonstrating its continued relevance for industrial deployments 

with limited computational resources. 

These findings refine existing theoretical expectations by demonstrating that no 

single GNN architecture dominates universally; instead, optimal performance emerges 

from alignment between graph topology, temporal stability, and heterogeneity. 

4.5. Practical Implications and Contribution to Literature 

The results extend current graph learning literature by providing a systematic, cross-

scenario evaluation grounded in real commercial data. Existing studies typically focus on 

a single domain, such as fraud detection or recommendation, making cross-context 

generalization unclear. By contrast, this study demonstrates that GNN performance varies 

substantially across business settings, offering actionable guidance for model selection: (1) 

Firms managing volatile transaction environments should prioritize temporal GNNs. (2) 

Organizations analyzing multi-layered supplier structures benefit from attention-based 

GNNs. (3) E-commerce platforms with rapid product turnover gain from inductive 

GraphSAGE architectures. (4) Companies with limited computational budgets can rely on 

GCN for efficient baseline modeling. 

By integrating relational embeddedness and dynamic capability theories into 

empirical analysis, the study also contributes conceptually: it provides a structured 

explanation for why specific graph models succeed under certain commercial conditions. 

5. Conclusion 

This study examined the applicability and performance of graph neural networks in 

business relationship mining across three representative commercial scenarios: supply-

chain procurement, financial transaction monitoring, and e-commerce product affinity 

modeling. By integrating relational embeddedness theory, graph representation learning, 

and the dynamic capability perspective, the analysis demonstrated that GNN 

architectures offer distinct advantages over traditional machine-learning baselines in 

capturing structural, heterogeneous, and temporal dependencies inherent in modern 

business networks. The comparative findings highlight three core contributions. First, 

attention-based GNNs effectively identify asymmetric relational influences, making them 

particularly suitable for supplier evaluation and risk propagation analysis. Second, 

temporal GNNs provide superior sensitivity to evolving merchant behaviors, enabling 

earlier detection of fraud patterns that static approaches overlook. Third, inductive 

models such as GraphSAGE show strong generalizability in environments where new 

products or entities continuously emerge, offering practical relevance for large-scale e-

commerce platforms. 

The study's findings extend existing literature by providing a cross-scenario 

performance comparison rather than domain-specific evaluation, thereby offering clearer 

guidance for model selection in operational contexts. Practically, the results support the 

deployment of GNN-based analytics in procurement risk assessment, AML compliance 

systems, and personalized recommendation engines, demonstrating measurable benefits 

in predictive accuracy and decision-support capacity. 

Future research may advance this work in three directions. First, developing 

interpretable GNN modules that reveal causal pathways in business graphs would 
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enhance transparency for regulatory and managerial decision-making. Second, scaling 

GNN inference to real-time, streaming commercial environments remains a 

computational challenge and warrants investigation into lightweight or approximate 

message-passing architectures. Third, integrating GNNs with large-scale foundation 

models or domain-specific language models may unlock richer representations that 

combine graph structure with textual, transactional, or contractual data. These directions 

remain grounded in feasible technological trends and align with the growing need for 

robust, explainable, and scalable analytics in complex commercial ecosystems. 
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