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Abstract: Business ecosystems, such as supply-chain networks, financial transaction systems, and
e-commerce platforms, exhibit complex relational structures that challenge traditional machine-
learning models. Although graph neural networks (GNNs) have shown promise in capturing such
dependencies, existing studies often focus on single domains, rely on static graphs, or lack
systematic comparison across heterogeneous commercial settings. To address these gaps, this study
proposes a unified analytical framework that integrates relational embeddedness theory, graph
representation learning, and dynamic capability perspectives. Using three representative real-world
scenarios, a retail procurement graph, an AML transaction network, and an e-commerce product
affinity graph, we evaluate four GNN architectures (GCN, GraphSAGE, GAT, and Temporal-GNN)
through link prediction, fraud detection, and recommendation tasks. The results show that
attention-based models outperform others in heterogeneous supplier and transaction environments,
temporal GNNs better capture evolving fraud patterns, and inductive architectures excel in high-
turnover product graphs. These findings deepen theoretical understanding of relational learning in
commercial systems and offer practical guidance for deploying GNN-based analytics in

procurement risk assessment, financial compliance, and personalized recommendation services.

Keywords: graph neural networks; business relationship mining; supply-chain analytics; fraud
detection; product affinity modeling

Received: 25 December 2025
Revised: 03 February 2026

Accepted: 15 February 2026
Published: 18 February 2026 Modern business ecosystems, such as supply-chain networks, merchant-client

transaction systems, and large-scale e-commerce platforms, exhibit increasingly complex
relational structures [1]. Firms, suppliers, customers, and products are connected through
multi-layered interactions that form high-dimensional graphs [2]. These relational
dependencies determine essential business functions including risk monitoring, supplier
diversification, inventory forecasting, and real-time fraud detection [3]. For example, the
conditions of the Creative Commons _PTOCUrement network of a large retailer such as Walmart contains thousands of suppliers
Attribution  (CC BY) license  and millions of purchase links, where disruptions in a few nodes may propagate across
(https://creativecommons.org/license  the entire network. Similarly, the IEEE-CIS anti-money-laundering (AML) transaction
s/by/4.0)). dataset reveals dense clusters of merchant-client interactions, in which fraudulent
behavior is rarely detectable from individual transactions but becomes salient when
relational patterns are considered [4]. In e-commerce settings, Amazon's product co-view
and co-purchase networks demonstrate how consumer decisions emerge from
interconnected item affinities rather than isolated attributes. These examples illustrate the
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centrality of relational structures in contemporary commercial operations, and the need
for analytical models capable of capturing such networked behavior.

While traditional machine-learning techniques have been widely applied to
commercial prediction tasks, they are inherently limited when dealing with relational
complexity. Classical approaches such as gradient boosting, logistic regression, or matrix
factorization generally treat observations as independent units or rely on manually
engineered features to approximate structural dependencies [5]. However, relationships
in business graphs are rarely linear or static: supplier reliability evolves over time,
fraudulent entities adapt their strategies, and product affinity networks shift with
seasonal or cross-category dynamics [6]. Existing studies using network analysis and
shallow graph-based models have partially addressed these challenges by incorporating
centrality metrics or structural heuristics, yet they struggle to model heterogeneous
interactions, temporal dependencies, and multi-type nodes in large-scale business
environments [7].

Recent advances in graph neural networks (GNNs) have introduced new
opportunities for commercial analytics by enabling joint learning of node attributes, edge
semantics, and graph topology. GNNs have demonstrated notable success in tasks such
as fraud detection, product recommendation, customer segmentation, and supply-chain
resilience forecasting. Nevertheless, several gaps remain. First, many applications focus
on single-domain tasks and do not examine how different GNN architectures perform
across diverse commercial scenarios [8]. Second, most prior studies rely on static graphs,
overlooking the temporal evolution of business interactions. Third, the literature lacks
comprehensive comparisons between GNNs and established baselines that are still
widely used in industry, such as XGBoost or collaborative filtering. Finally, the theoretical
connection between graph representation learning and business decision-making
frameworks, such as relational embeddedness or dynamic capabilities, remains
underdeveloped.

This study aims to address these gaps by proposing a unified analytical framework
for evaluating the applicability and performance of graph neural networks in business
relationship mining. Specifically, we examine three representative cases: (1) supplier-
manufacturer link prediction in a retail procurement network modeled after Walmart-
style open data; (2) fraudulent entity detection within an AML transaction network; and
(3) product affinity mining in an e-commerce clickstream graph. By comparing graph
convolutional networks (GCN), graph attention networks (GAT), GraphSAGE, and
temporal GNN architectures across these scenarios, the study identifies performance
patterns, architectural strengths, and domain-specific trade-offs. Our methodological
approach combines literature analysis, multi-case comparison, quantitative model
benchmarking, and qualitative business interpretation.

The academic significance of this research lies in its integration of GNN-based
relational modeling with theories of business networks and data-driven decision-making.
Practically, the findings inform enterprises on how to select and deploy GNN
architectures for supply-chain intelligence, risk control, demand prediction, and
recommendation optimization. Through its multi-scenario evaluation and theoretically
anchored analysis, this study contributes both methodological clarity and actionable
insights for the development of next-generation commercial analytics powered by graph
neural networks.

2. Literature Review

Research on graph-based commercial analytics has expanded considerably in recent
years, driven by the increasing accessibility of network-structured business data and the
growing maturity of graph learning techniques. The existing literature may be broadly
categorized into three subfields: (1) graph-based models for business network analysis, (2)
graph neural networks for commercial prediction tasks, and (3) dynamic and
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heterogeneous GNNs for evolving market systems. Each strand offers distinct strengths
while exhibiting important limitations that together reveal a persistent research gap.

2.1. Graph-Based Business Analytics

Early studies applied graph-theoretical models to supply chains, transaction
networks, and product ecosystems. These works highlighted the advantages of relational
indicators, such as structural centrality, community clustering, or connectivity robustness,
in evaluating supplier reliability, detecting abnormal merchant clusters, and identifying
influential products [9]. Such approaches enhanced interpretability and offered useful
insights into structural vulnerabilities within procurement and financial networks.

However, the limitations of graph-theoretical models become evident when business
interactions grow increasingly heterogeneous and dynamic. Traditional metrics cannot
jointly integrate node attributes, edge semantics, and multi-relational patterns, nor can
they effectively learn from large-scale, high-dimensional business graphs [10].
Comparisons among these models show that while they provide strong explanatory
power, they lack predictive flexibility and struggle to accommodate temporal variations
or complex cross-category relationships [11]. The resulting gap lies in the need for models
capable of both structural reasoning and task-specific prediction.

This study contributes by integrating graph-theoretical insights with modern GNN
architectures, enabling predictive analysis without abandoning structural interpretability.

2.2. Graph Neural Networks for Commercial Prediction

The second stream of research applies graph neural networks to tasks such as fraud
detection, churn prediction, cross-category product recommendation, and supply-chain
link prediction. Studies in this area demonstrate clear advantages: GNNs capture multi-
hop dependencies, integrate heterogeneous features, and outperform classical machine-
learning baselines in sparse or relationally complex environments. Graph attention
mechanisms further allow models to learn importance weights among neighbors, offering
partial interpretability [12].

Nonetheless, existing research also reveals several shortcomings. Many studies rely
on static graph snapshots, overlooking the fact that commercial transactions, supplier
relationships, and consumer behaviors evolve rapidly. Furthermore, comparison across
different GNN architectures is often limited, making it difficult to assess which model
families are most suitable for specific business scenarios [13]. Cross-study evaluations
indicate that while GNNs increase predictive accuracy, they often do so at the cost of
transparency, computational efficiency, and scalability, factors crucial for enterprise
deployment.

The unresolved gap involves the absence of systematic benchmarking of diverse
GNN architectures under realistic business conditions. Addressing this gap, this study
conducts a cross-scenario evaluation of multiple GNN models, emphasizing performance
trade-offs relevant to commercial decision-making.

2.3. Dynamic and Heterogeneous GNNSs for Market Systems

A more recent line of research explores temporal and heterogeneous GNNs,
motivated by the multi-stakeholder and multi-relational nature of business ecosystems.
These models excel at capturing evolving interactions, such as shifting supplier alliances,
progressive fraud patterns, or seasonally varying product affinities [14]. They also
support modeling of heterogeneous entities, firms, customers, products, each with unique
behavioral and structural characteristics.

Despite these advances, limitations persist. Temporal GNNs impose high
computational and data requirements, and heterogeneous GNNs may struggle with noisy
or incomplete business attributes. Comparative findings show that while these models
excel in complex relational environments, their added sophistication does not always
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translate into practical gains unless supported by ample, high-quality data [15]. Moreover,
few studies explicitly relate model behavior to established business theories, leaving gaps
in interpretive depth.

The key research gap concerns the lack of integrated analysis connecting dynamic
graph learning with business-oriented theoretical frameworks.

By addressing this gap, the present study contributes a unified framework that
evaluates temporal and heterogeneous GNNs alongside classical architectures and
connects empirical findings with relational embeddedness and dynamic capability
perspectives.

3. Theoretical Framework and Methodology

To clarify the conceptual basis of this study, Figure 1 illustrates the unified theoretical
framework underlying our analysis.

Relational

Embeddedness Dynamic Capability

Graph Representation
Learning

Figure 1. Unified Theoretical Framework.

3.1. Theoretical Framework

The analytical foundation of this study integrates theories of graph representation
learning with established perspectives in business network analysis. The framework
consists of three layers: (1) relational embeddedness theory for modeling business
interactions, (2) graph learning principles for encoding structure and attributes, and (3)
dynamic capability perspectives for interpreting temporal change in commercial
networks.

3.1.1. Relational Embeddedness and Commercial Networks

Relational embeddedness theory views firms, suppliers, customers, and products as
entities embedded within interdependent networks. Business outcomes, such as supplier
reliability, fraud risk, or cross-category product affinity, are shaped not only by individual
attributes but also by local and global structural configurations. In procurement networks,
for instance, suppliers connected to tightly clustered sub-communities often exhibit stable
performance due to shared certifications, overlapping logistics, or co-procurement
histories. Likewise, in financial transaction networks, fraudulent merchants frequently
form dense temporal clusters with repeated micro-transactions.

These relational features are represented in graph form. Let

G = (V,E X)

denote a business network where V is the set of nodes (e.g., suppliers, products,
merchants), E is the set of edges (e.g., transactions, co-purchases, contracts), and X €
RIVI*4 contains node attributes (e.g., credit score, product category, or transactional
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statistics). This representation allows relational embeddedness to be operationalized
mathematically and serves as input for graph learning models.

3.1.2. Graph Representation Learning

Graph neural networks generalize neural learning to relational structures by
aggregating information from neighboring nodes. A general GNN layer can be written as:

WD = oW ® - AGG{RY", h" | j € N (D)D),

where

hl@ denotes the representation of node i at layer [,

N (i) is the set of neighbors of node i,

W® is a trainable weight matrix,

o(+) is an activation function, and

AGG is an aggregation operator such as mean, sum, or attention-weighted sum.

Different architectural variations emphasize different relational properties.

Graph Convolutional Networks (GCN) emphasize local smoothness and perform
well on structurally homogeneous commercial graphs such as supplier co-procurement
networks.

Graph Attention Networks (GAT) introduce learnable attention coefficients «;;,
enabling models to identify key upstream suppliers or high-risk transactional neighbors.

GraphSAGE supports inductive generalization, making it suitable for e-commerce
product graphs where new products constantly emerge.

Temporal GNNs incorporate timestamps ttt and dynamic edges E(t), enabling the
modeling of evolving fraud patterns and shifting product preferences.

3.1.3. Dynamic Capability Perspective

The dynamic capability lens provides theoretical grounding for interpreting
temporal changes observed in business networks. It emphasizes the ability of firms to
sense, adapt, and respond to shifting environments. In this framework, commercial
relationships are not static but evolve as firms adjust their partnerships, products, or risk
strategies. Temporal GNNs, capable of capturing evolving edge sequences e;;(t),
naturally align with this theoretical stance.

By combining relational embeddedness, graph representation learning, and dynamic
capability perspectives, the study constructs a unified framework linking graph-level
representations with business decision-making logic.

3.2. Research Methodology
3.2.1. Case Selection Rationale

This study examines three representative commercial scenarios chosen for their
structural diversity and practical relevance. The first is a retail supply-chain network
derived from Walmart-style open procurement data, where suppliers and product
categories form a sparse hierarchical graph suited for link prediction. The second is a
financial transaction network based on the IEEE-CIS AML dataset, characterized by
heterogeneous, rapidly evolving merchant-client interactions, an ideal setting for
evaluating temporal and attention-based GNNSs. The third is an e-commerce product
affinity graph constructed from Amazon clickstream and co-purchase data, whose dense
communities support testing of inductive representation learning. Together, these cases
cover supply-chain, financial, and consumer-behavior networks, enabling systematic
cross-scenario evaluation of model performance.

3.2.2. Data Preprocessing and Graph Construction

Data preprocessing follows a unified workflow. Entity identifiers, such as supplier
codes, merchant IDs, and product SKUs, are normalized to ensure consistent node
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representation. Edges are generated according to domain-specific interaction signals: co-
procurement relationships in the supply-chain case, time-stamped monetary flows in the
AML network, and co-view or co-purchase behaviors in the e-commerce graph. Node
features reflect commercially relevant attributes, including on-time delivery rate,
transactional frequency, risk indicators, category embeddings, and user engagement
metrics. For dynamic graphs, edges e;;(t) are chronologically ordered to construct
temporal sequences. The final datasets are represented as G; = (Vy,E;,X1),G, =
(Vo, Ex(t),X3), and Gs = (V3, E3,X3), capturing the structural differences necessary for
robust comparison.

3.2.3. Model Implementation

Four GNN architectures are implemented. The GCN serves as a baseline
emphasizing structural smoothing; GraphSAGE supports inductive inference, fitting the
e-commerce context with continually added items; the GAT introduces learnable attention
weights, useful for noisy heterogeneous networks such as AML transactions; and
temporal GNNs model evolving interactions through recurrent or attention-based
mechanisms. Models are trained using a binary cross-entropy loss:

L=—-YujYijlogdi + (1 —yi)log(1—9;), L =—(0.)),

where y;; is the ground-truth label and jJ;; the predicted probability.
Hyperparameters, including learning rate 7, embedding dimension d, and attention
heads K, are optimized via grid search to ensure fair comparison across architectures.

3.2.4. Evaluation Metrics

Model performance is assessed using metrics aligned with each task. AUC and F1-
score measure fraud detection and link prediction accuracy, while Precision@K evaluates
the relevance of top-ranked product recommendations. Stability is examined through the
standard deviation of repeated runs. Temporal GNNSs are additionally evaluated using
time-aware accuracy:

TA—Acc = 231 19, = y),

which captures the consistency of predictions across evolving transaction sequences.
This multi-metric approach ensures balanced assessment of ranking performance,
classification effectiveness, and temporal robustness.

3.2.5. Business Interpretation and Comparative Analysis

Business-oriented interpretation complements quantitative evaluation. Link-path
tracing highlights structurally influential suppliers or suspicious merchant clusters, while
attention-weight visualization reveals which neighbors contribute most strongly to
predictions, offering insights into risk propagation and consumer preference patterns.
Cross-case comparison links performance differences to graph topology, for example, the
advantage of attention-based models in heterogeneous networks and the superiority of
temporal GNNs in settings with fast-changing transactional behavior. This combined
analytical strategy ensures that findings remain both computationally rigorous and
commercially interpretable, supporting practical applications in supply-chain intelligence,
financial risk control, and personalized recommendation.

4. Findings and Discussion

This section synthesizes empirical results from the three commercial graph scenarios
and interprets them through the theoretical lenses established earlier. The findings
highlight how graph neural networks, particularly attention-based and temporal variants,
capture structural and temporal dependencies that traditional machine-learning models
overlook. Four figures summarize key patterns across supply-chain, financial transaction,
and e-commerce product graphs.
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4.1. Structural Learning Performance in Supply-Chain Networks

Results from the Walmart-style supplier-manufacturer procurement graph show that
graph neural networks substantially outperform conventional baselines in link prediction
tasks. Among all tested architectures, the GAT model achieves the highest AUC,
improving predictive accuracy by approximately 15-18% over GCN and GraphSAGE and
by more than 30% relative to logistic regression and matrix factorization. This
performance advantage reflects the ability of attention mechanisms to capture asymmetric
relational importance, particularly in cases where suppliers with frequent co-procurement
histories or overlapping logistics hubs exert disproportionate influence on downstream
manufacturers. As illustrated in Figure 2, GAT consistently outperforms other model
families across both AUC and F1 metrics, demonstrating its effectiveness in extracting
multi-hop structural signals embedded in procurement networks.

. AUC

0.8 1

0.6 1
o
Q
g
d
g
3
B
L 0.4

0.2 4

0.0 -

LR XGBoost MF GCN GraphSAGE GAT
Models

Figure 2. Supplier-Manufacturer Link Prediction Accuracy Across Models.

These findings align with relational embeddedness theory, which posits that supply-
chain stability is shaped by the density, redundancy, and cohesion of upstream-
downstream ties. GAT's superior performance indicates that structural signals, such as
sub-community membership and local supplier triads, carry significant predictive value.
Classical baselines simplify these dependencies into engineered features, losing multi-hop
nuance.

Compared with existing research that applies static heuristics (e.g., centrality scores)
for supplier evaluation, the present study shows that neural relational aggregation
delivers more granular insights, particularly in sparse but hierarchically layered networks.
The improved prediction accuracy has practical implications for procurement resilience:
disruptions can be identified earlier when emerging supplier-manufacturer relationships
are accurately modeled.

4.2. Temporal Fraud Patterns in Financial Transaction Networks

The AML transaction network demonstrates the clearest advantage for temporal
GNNs, especially in rapidly evolving fraud scenarios. Fraudulent merchants frequently
adapt behavioral patterns by altering transaction timing, client routing, or micro-
transaction strategies. Temporal GNNs capture these dynamics through time-indexed
edge sequences e;;(t), enabling detection of subtle anomalies that static models miss. As
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shown in Figure 3, the temporal model consistently outperforms both static GNN and
GAT baselines over successive time windows, achieving the highest time-aware accuracy.

Static GNN
0.90 GAT
—a— Temporal-GNN
0.85F
o
2 0.80
<
0.75
0.70

1 2 3 4 5 6 7 8
Time Window (T1-T8)

Figure 3. Temporal vs. Static Model Performance in AML Fraud Detection.

The temporal model achieves the highest time-aware accuracy, improving TA-Acc
by 12-20% relative to GAT and static GCN. Notably, fraud clusters exhibit distinctive
temporal signatures, short bursts of micro-payments or sudden concentration of client IDs.
Standard GNNs treat such periods as aggregated edges, losing sequence-level risk cues.

Comparative analysis confirms that existing fraud research relying on transaction-
level features or aggregated histories fails to capture relational evolution. By contrast, this
study provides empirical evidence that the dynamic capability perspective, traditionally
applied to firm strategy, also explains fraud pattern adaptation. The ability of temporal
GNN s to "sense-adapt-respond"” to evolving patterns reinforces the theoretical integration
proposed earlier.

4.3. Community-Level Product Affinity in E-Commerce Networks

In the e-commerce product graph, all GNN variants outperform collaborative
filtering and matrix factorization baselines, yet GraphSAGE offers the best balance
between accuracy and scalability. Because e-commerce platforms continuously introduce
new items, inductive learning becomes essential, and GraphSAGE's neighborhood
sampling mechanism enables the model to embed unseen products without full retraining.
As illustrated in Figure 4, GraphSAGE achieves the highest Precision@10 and
Precision@20 scores across all model families, improving Precision@10 by approximately
9-12% compared with GCN and by more than 20% relative to collaborative filtering. This
performance advantage highlights the role of community-level product affinity: items
embedded within densely interconnected co-view clusters exhibit stronger substitutive or
complementary relationships that GNNs capture more effectively.

Vol. 3 (2026)

294



Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

0.65r
Precision@10
Precision@20
0.60
0.55
0.50

Precision
(=]
N
[92]

040f =

0.35}

0.30}

0.25—¢ MF GCN GraphSAGE GAT
Models

Figure 4. Product Recommendation Precision@K Across Model Families.

In contrast, GAT, while demonstrating strong performance in heterogeneous
transaction networks, shows only marginal gains in this domain. This outcome likely
reflects the relatively homogeneous neighbor quality within product graphs, where
attention weighting contributes less additional value. This result diverges from
assumptions in prior studies that treat attention-based models as universally superior.
Instead, the findings reveal a domain-specific trade-off: attention mechanisms are most
beneficial when relational importance varies sharply across neighbors, whereas inductive
models excel in dense and regularly structured product ecosystems.

4.4. Cross-Scenario Comparison and Theoretical Interpretation

To synthesize results across the three cases, Figure 5 summarizes the performance
landscape of the four GNN architectures. The patterns validate the theoretical assumption
that graph topology and temporal volatility jointly determine model suitability.

GraphSAGE

Stability —GAT
—— Temporal-GNN

Scalabilify

teTogeneity
Handling

Figure 5. Comparative Strengths of GNN Architectures Across Three Business Graphs.

Four cross-scenario insights emerge: (1) Attention mechanisms excel in
heterogeneous relational contexts. GAT's superiority in AML and supply-chain networks
demonstrates that learning neighbor importance is essential when edges encode
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asymmetric influence (e.g., risky merchants or dominant suppliers). (2) Temporal GNNs
dominate in high-volatility environments. The AML network exhibits rapid structural
changes; temporal modeling enhances sensitivity to relational evolution and aligned
closely with the dynamic capability framework. (3) GraphSAGE is most effective in
inductive and dense community graphs. Its sampling strategy offers scalability and
robustness, making it well suited for e-commerce environments with frequent node
turnover. (4) GCN remains a strong baseline for structurally homogeneous graphs.
Although surpassed by advanced models, GCN performs competitively in well-
structured networks, demonstrating its continued relevance for industrial deployments
with limited computational resources.

These findings refine existing theoretical expectations by demonstrating that no
single GNN architecture dominates universally; instead, optimal performance emerges
from alignment between graph topology, temporal stability, and heterogeneity.

4.5. Practical Implications and Contribution to Literature

The results extend current graph learning literature by providing a systematic, cross-
scenario evaluation grounded in real commercial data. Existing studies typically focus on
a single domain, such as fraud detection or recommendation, making cross-context
generalization unclear. By contrast, this study demonstrates that GNN performance varies
substantially across business settings, offering actionable guidance for model selection: (1)
Firms managing volatile transaction environments should prioritize temporal GNNSs. (2)
Organizations analyzing multi-layered supplier structures benefit from attention-based
GNNs. (3) E-commerce platforms with rapid product turnover gain from inductive
GraphSAGE architectures. (4) Companies with limited computational budgets can rely on
GCN for efficient baseline modeling.

By integrating relational embeddedness and dynamic capability theories into
empirical analysis, the study also contributes conceptually: it provides a structured
explanation for why specific graph models succeed under certain commercial conditions.

5. Conclusion

This study examined the applicability and performance of graph neural networks in
business relationship mining across three representative commercial scenarios: supply-
chain procurement, financial transaction monitoring, and e-commerce product affinity
modeling. By integrating relational embeddedness theory, graph representation learning,
and the dynamic capability perspective, the analysis demonstrated that GNN
architectures offer distinct advantages over traditional machine-learning baselines in
capturing structural, heterogeneous, and temporal dependencies inherent in modern
business networks. The comparative findings highlight three core contributions. First,
attention-based GNNs effectively identify asymmetric relational influences, making them
particularly suitable for supplier evaluation and risk propagation analysis. Second,
temporal GNNs provide superior sensitivity to evolving merchant behaviors, enabling
earlier detection of fraud patterns that static approaches overlook. Third, inductive
models such as GraphSAGE show strong generalizability in environments where new
products or entities continuously emerge, offering practical relevance for large-scale e-
commerce platforms.

The study's findings extend existing literature by providing a cross-scenario
performance comparison rather than domain-specific evaluation, thereby offering clearer
guidance for model selection in operational contexts. Practically, the results support the
deployment of GNN-based analytics in procurement risk assessment, AML compliance
systems, and personalized recommendation engines, demonstrating measurable benefits
in predictive accuracy and decision-support capacity.

Future research may advance this work in three directions. First, developing
interpretable GNN modules that reveal causal pathways in business graphs would
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enhance transparency for regulatory and managerial decision-making. Second, scaling
GNN inference to real-time, streaming commercial environments remains a
computational challenge and warrants investigation into lightweight or approximate
message-passing architectures. Third, integrating GNNs with large-scale foundation
models or domain-specific language models may unlock richer representations that
combine graph structure with textual, transactional, or contractual data. These directions
remain grounded in feasible technological trends and align with the growing need for
robust, explainable, and scalable analytics in complex commercial ecosystems.
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