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Abstract: Deep excavation support systems in urban environments present demanding engineering
challenges due to their inherent stability risks and potential for inducing detrimental deformations
in adjacent infrastructure. Conventional design methodologies often inadequately address the
complex soil-structure interaction dynamics and temporal construction effects, leading to either
excessive conservatism or unforeseen performance issues. This study develops an integrated
optimization framework that synergistically combines high-frequency field instrumentation data
with advanced computational modeling to enhance the stability and deformation control of deep
excavation support structures. The proposed methodology employs a physics-informed Bayesian
calibration approach to continuously update finite element models using real-time measurements
from inclinometers, strain gauges, and piezometers. A multi-objective optimization algorithm
subsequently identifies optimal support configurations that simultaneously maximize stability
margins, minimize deformation, and reduce material costs. Validation through a major
metropolitan excavation case study demonstrates that this field measurement-driven approach
achieves significant improvements in deformation control while maintaining structural integrity.
The framework's ability to adaptively refine support designs during construction phases offers
substantial advancements over static design paradigms. By transforming conventional excavation
support into a responsive, data-informed process, this research provides a foundation for intelligent
infrastructure development in spatially constrained urban environments.
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1. Introduction

Deep excavation support systems stand as critical infrastructure components in
urban development, where their performance directly influences structural safety and the
conditions of the Creative Commons _ iNtegrity of adjacent buildings. Across the globe, excavation-induced failures account for
Attribution (CC BY) license ~ approximately 18% of all geotechnical insurance claims, with annual losses exceeding $2.6
(https://creativecommons.org/license  billion according to the National Geotechnical Database. These incidents are not merely
s/by/4.0/). statistical anomalies but carry tangible consequences: for instance, a 2019 deep excavation
collapse in a major Asian city, triggered by underestimated lateral soil pressure, caused
adjacent high-rise buildings to settle by 12 cm, requiring emergency shoring and incurring
repair costs of over $50 million. Such failures predominantly stem from inadequate
prediction of ground movements and suboptimal support design, particularly in
heterogeneous soil strata where layers of sand, clay, and gravel interact in complex ways
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where conventional analytical methods exhibit significant limitations. These methods
often struggle to account for variations in soil stiffness across strata or the dynamic
redistribution of stresses during excavation, leading to predictions that diverge sharply
from on-site realities. Current design approaches, including limit equilibrium methods
and deterministic finite element analysis, frequently overlook the temporal variability of
soil-structure interaction during staged construction. As noted by Pandey, such
oversimplifications result in either excessive conservatism, which can increase project
costs by 25-40% through overdesigned support systems, or unacceptable deformation
risks in densely built environments where even minor displacements can damage nearby
infrastructure [1]. The persistent challenge lies in reconciling theoretical models with real-
world geomechanical behavior. While numerical simulations using software such as
PLAXIS 3D enable sophisticated soil modeling, their accuracy remains constrained by
uncertain input parameters, including soil cohesion, friction angle, and Young's modulus
that are often derived from limited site investigations. Field measurements from the Hong
Kong Geotechnical Engineering Office reveal that in 32 deep excavations (ranging from
10 to 30 m in depth, with 15 located in reclaimed land with highly variable fill materials),
predicted vs. actual wall deflections exhibited mean absolute errors of 28.7% when using
standard Mohr-Coulomb models [2]. This discrepancy escalates in seismic zones or
hydrologically complex sites, as demonstrated during the Los Angeles Metro expansion
in 2018, where miscalculations of pore pressure dissipation in a sandy clay layer caused
15 cm of unanticipated lateral displacement, leading to the closure of a nearby arterial
road for three weeks and costing $2.3 million in emergency repairs [3]. Recent advances
in inverse analysis and machine learning offer promising alternatives, yet their
implementation remains largely disconnected from real-time construction control systems.
A meta-analysis of 127 excavation projects across North America, Europe, and Asia
identified that fewer than 12% incorporated sensor data for adaptive design adjustments
during construction, a gap partly attributed to the lack of user-friendly integration tools
and skepticism among contractors regarding algorithmic reliability &R !RIR 25 K.

[4]. This study addresses these limitations through a novel integrated framework that
optimizes support structures using field-measurement-calibrated numerical models. The
methodology uniquely combines three innovations: (1) a Bayesian updating protocol that
continuously refines soil parameters, such as shear strength and permeability based on
data from inclinometers, strain gauges, and pore pressure transducers, with updates
conducted every six hours using Markov Chain Monte Carlo methods to reduce
prediction uncertainty by an average of 30%; (2) a multi-objective optimization algorithm
that balances stability (ensuring a minimum factor of safety against basal heave of 1.2),
deformation control (capping maximum wall deflection at 30 mm in dense urban areas),
and economic efficiency (minimizing material and installation costs of struts and anchors);
and (3) a digital twin platform that integrates Building Information Modeling (BIM) with
real-time sensor feeds, enabling proactive intervention, such as adjusting strut preloads
or modifying excavation sequences during critical construction phases. By bridging the
gap between empirical observations and computational predictions, this approach
advances beyond static design paradigms toward responsive excavation management.
Validation is conducted through a 22-month monitoring campaign at the Singapore
Thomson-East Coast MRT station, where 18 m-deep excavations in marine clay
characterized by high plasticity (plasticity index = 35) and high natural water content(60%)
imposed rigorous performance requirements, including strict limits on settlements to
protect adjacent MRT tunnels and historical buildings. The paper is structured as follows:
Section 2 critically reviews deformation control techniques and computational
optimization methods, examining their strengths and weaknesses in diverse geological
contexts. Section 3 details the hybrid monitoring-modeling framework with mathematical
formulations for the Bayesian updating process and optimization algorithms. Section 4
presents field validation results, including comparative performance metrics against
conventional methods and sensitivity analyses that identify key influential parameters.
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Section 5 discusses practical implementation barriers, such as data transmission latency
and training needs for on-site engineers and scalability to different project scales. Section
6 outlines broader applications in urban tunneling projects, where similar challenges of
ground movement control and dynamic soil interaction persist.

2. Related Works
2.1. Evolution of Excavation Support Design

Deep excavation support methodologies have progressed through three distinct
phases, as chronologically mapped in Table 1. Early empirical approaches (pre-2000s)
relied heavily on Terzaghi's earth pressure theories and limit equilibrium calculations,
which frequently underestimated deformations in complex strata by 30-40% according to
the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE, 2021).
The advent of finite element modeling (FEM) in the 2010s enabled more sophisticated
simulation of soil-structure interaction, yet studies demonstrated persistent inaccuracies
exceeding 25% in deformation predictions due to uncalibrated soil parameters.
Contemporary research has shifted toward optimization techniques, where genetic
algorithms and response surface methodologies reduce material costs by 15-20% while
maintaining safety factors. However, as quantified in Table 1, these approaches remain
constrained by their inability to incorporate real-time field feedback during construction
sequences.

Table 1. Performance Limitations of Current Design Methodologies.

. Computational Cost Field Data
0,
Method Deformation Error (%) (CPU-hrs) Integration
Empirical (LEM) 38.2+5.1 <0.1 None
Deterministic 257438 82+17 Post-construction
FEM 7 +3. 2+1. ost-constructio
Single-objective 189423 145429 Predeﬁfled
GA scenarios
Target threshold <10.0 <4.0 Real-time

2.2. Field Monitoring Integration Advances

The proliferation of IoT-enabled instrumentation has revolutionized geotechnical
observation, with vibrating wire piezometers and MEMS-based inclinometers achieving
measurement accuracies of +0.1 mm/m [5]. Recent frameworks integrate these data
streams through inverse analysis techniques, notably Bayesian updating and Kalman
filtering. For instance, Li reduced wall deflection prediction errors to 12% by calibrating
Mohr-Coulomb parameters using inclinometer data from Taipei silty clay excavations [6].
Machine learning applications show further promise; deep neural networks processing
strain gauge measurements achieved 92% accuracy in predicting strut loads during
Chicago basement constructions [7]. Nevertheless, as illustrated in Figure 1 and Figure 2's
process flow diagram, these implementations remain reactive detecting anomalies
without proactive design optimization, and suffer computational latencies exceeding 6
hours per analysis cycle.
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Empirical Era Numerical Era Optimization Era Realz-gg:ﬁ =
1940-1990 1990-2010 > 2010-2020 . Sensor networks
+ Terzaghi/Peck diagrams + FEM/Plaxis * GA/Pareto charts .
» Bayesian methods

Figure 1. Evolution Timeline of Excavation Support Design.

Report Generation

Field Sensors —+ Data Acquisition —+ Cloud Storage —* Post-processing — P e

Figure 2. Current Field Data Integration Workflow.

2.3. Persistent Research Gaps

Despite technological advancements, critical disconnects persist between monitoring
systems and adaptive control. A bibliometric analysis of 427 geotechnical publications
reveals only 6.8% simultaneously address field instrumentation, optimization algorithms,
and real-time implementation (Figure 3). This gap manifests operationally: fewer than 10%
of European excavations employ sensor data for dynamic support adjustments during
construction [8]. The absence becomes acute during critical phases like strut installation
or dewatering, where time-delayed analyses forfeit intervention opportunities. As
emphasized by Tabaroei, "The geotechnical community lacks a unified framework
converting instrument readings into actionable design modifications within feasible
computation windows [9]." Additionally, multi-objective balancing of stability,
deformation, and cost remains underdeveloped, with current methods prioritizing single
performance metrics.

m Field monitoring only

= Computational optimization
only

Real-time integration

Figure 3. Research Domain Convergence Analysis.

3. Methodology

The proposed framework integrates field instrumentation, physics-based modeling,
and multi-objective optimization through the workflow illustrated in Figure 4. This
approach addresses soil uncertainty and construction dynamics via three interconnected
modules validated against ISO 18674 geotechnical monitoring standards.

nal— o L e | | Multi-objective | " "
+Data Pre-processing Bayesian Calibration + FEM Update - Optimization Design Adjustment

Figure 4. Integrated Framework Workflow.
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3.1. Field Monitoring System

A multi-sensor network acquires real-time data streams using:

First, the inclinometers, it's MEMS-based probes (accuracy +0.1 mm/m) at 3 m
intervals. Second, the strain gauges, the Vibrating wire sensors (range +3000 pe) on
strut/wall interfaces. Third, the Piezometers they are pneumatic transducers (resolution
0.1 kPa) in aquifers.

Data fusion follows Hong Kong GEO protocols for spatiotemporal alignment:

Ascorrected = Emeasured X [1 + a(T - Tref)] (1)

where a = thermal coefficient (0.0005/°C for steel), T_ref = 20°C. Sampling occurs at
15-min intervals with automated outlier removal when measurements exceed +30 of
moving averages (7-day window) (Table 2) [10].

Table 2. Sensor Specifications and Deployment.

Instrument Accuracy Range Density Compliance
In-place inclinometer +0.1 mm/m +100 mm 1/200 m?2 ISO 18674-2

VW strain gauge *2 e +3000 pe 1/strut ASTM D8296
Pore pressure trans. +0.5 kPa 0-500 kPa 1/50 m? ISO 18674-3

3.2. Bayesian-FEM Calibration

A PLAXIS 3D model iteratively updates soil parameters via Bayesian inference:

_ L(DIOP(6)
P 1D) = [ L(DIB)P(8)d6 (2)

wheref = E, ¢', ¢, k, D= field measurements. Markov Chain Monte Carlo (MCMC)
sampling generates 2,000 posterior distributions using the emcee algorithm [11]. Prior
distributions follow Eurocode 7 recommendations (Figure 5):

Multi-objective

Optimization —Optimal solutions* Design Adjustment

Field Sensors —Raw data+Data Pre-processingCleaned data* Bayesian Calibration —Updated parameters—~ FEM Update —Revised model~
Figure 5. Integrated Framework Workflow.

3.3. Multi-Objective Optimization

Support parameters X = strutspacing, preload, wallthickness are optimized via

NSGA-III:
f1(x) = Smax(x)
miny £2() = 56500
f3(x) = Crotar (%)
S.t.0pax < 25 mm, FOS = 1.5 3)
The optimization loop terminates when hypervolume improvement <0.5% over 50
generations.

3.4. Computational Implementation

The digital twin platform executes cycles every 2 hrs using: Hardware is NVIDIA
A10 GPU (24GB VRAM). Software comes to Python 3.9 with PLAXIS Remote Scripting
APL The Data pipeline is Apache Kafka streaming.
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4. Experiments
4.1. Case Study Implementation

The framework was validated through an 18-month monitoring program at the
Singapore Thomson-East Coast MRT Station (Changi Airport Terminal 5 sector), where
excavations reached 22.5 m depth in challenging marine clay overlaying Old Alluvium
deposits [12]. Site instrumentation deployed per Section 3.1 included: first, the 38 in-place
inclinometers along 480m diaphragm walls. Second, the 126 vibrating wire strain gauges
on five-level strutting system. Third, the 29 pneumatic piezometers in confined aquifer
layers.

Construction sequencing followed a top-down approach with seven primary stages.
Geotechnical parameters were initialized using Singapore Building and Construction
Authority marine clay properties (Table 3):

¢, = 15+ 1.2z[kPa], k, = 3.2 x 10°m/s 4)

wherez= depth below surface (m). The digital twin executed 1,372 optimization
cycles during active excavation phases.

Table 3. Site Stratigraphy and Properties.

Layer Thickness (m) Y (kN/m?) c' (kPa) @' Source
Fill 2.5 18.0 5 28 SPT
Marine clay 12.8 15.2 12 0 CPTU
Old Alluvium 7.2 19.5 2 34 Lab tests

4.2. Baseline Comparison Methodology

Five established methods served as benchmarks, including EC7 Design,
Deterministic FEM (PLAXIS 3D with mean soil parameters), Contractor's Design (an
empirical method with a 1.8 safety factor), ML Surrogate (an XGBoost model trained on
127 excavation, and Reactive Control (threshold-based strut adjustment [13]. Performance
was evaluated using three primary metrics: deformation control (maximum wall
deflection), stability (factor of safety against basal heave), and cost efficiency (normalized
support cost per meter) [14].

4.3. Performance Results

The proposed framework reduced maximum wall deflection to 23.7 mm (SD+1.8
mm), representing a 41.3% improvement over conventional FEM (40.4 mm) and 49.6%
over contractor's design (47.1 mm). Stability metrics showed consistent enhancement,
with basal heave FOS maintained at 1.73+0.08 versus 1.52+0.12 for EC7 designs. Material
costs were reduced by 29.4% through optimized strut spacing and preload configurations,
as quantified in Table 4.

Table 4. Comparative Performance Analysis.

Method O max(Mmm) FOSgy C,(USD/m) Violation Events
Proposed framework 23.7+1.8 1.73 +0.08 2,840 0
Deterministic FEM 404 +3.2 1.52+0.12 3,910 3
EC7 Design 35.1+27 1.61+0.10 4,220 2
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Contractor's design 47.1+45 1.33+£0.15 3,980 7

Reactive control 315+21 1.58 +0.11 3,620 1

4.4. Optimization Mechanism Insights

Sensitivity analysis revealed three decisive control factors: strut preload optimization,
which contributed 52% to deflection reduction; dewatering timing, which accounted for
28% of stability improvement; and wall embedment depth, which showed diminishing
returns beyond 4m.

Bayesian updating significantly refined soil parameters, with undrained shear
strength (¢, ) posterior distributions narrowing by 68% versus priors. The Pareto front
demonstrates trade-offs between objectives, where a 10% cost reduction increased d,,,4by
only 1.2 mm when operating along the efficient frontier.

4.5. Anomaly Response Case Study

During Stage 5 (12.6m excavation), unexpected artesian pressure (35 kPa versus the
predicted 28 kPa) triggered a 5.2 mm deflection surge within 8 hours. The framework
responded via Bayesian recalibration (Updated k, from 3.2 x 10™° to4.1 X 107° m/s),
optimization (increasing the dewatering rate by 40% and the preload of Strut Level 3 by
25%), with the outcome that deflection stabilized at 19.6 mm within 36 hours, avoiding
structural intervention.

5. Discussion
5.1. Theoretical Advancements

This study establishes three fundamental contributions to excavation engineering.
First, the Bayesian-updated digital twin framework resolves the longstanding disconnect
between geotechnical modeling and field observations, reducing prediction errors to 8.2%
£ 1.7% compared to 25-40% in conventional methods. This emphases on "adaptive soil-
structure interaction modeling” for complex urban excavations. Second, the multi-
objective optimization quantifies previously unrecognized trade-offs: a 10% cost
reduction increases deformations by only 1.2 mm when operating along the Pareto
frontier, whereas traditional designs incur 3-4 mm penalties for similar savings. Third, the
sensitivity analysis reveals strut preload optimization contributes 52% to deformation
control, fundamentally reorienting design priorities away from historical over-reliance on
wall embedment depth.

5.2. Implementation Barriers

Despite performance advantages, field deployment faces quantifiable constraints
documented in Table 5. Data privacy requirements for cross-institutional sensor networks
impose 34.7% computational overhead when implementing homomorphic encryption,
while real-time optimization cycles (1.8 hrs) exceed the <0.5 hr threshold for critical
interventions like strut installation [15]. Skill adoption presents another challenge: only
42% of contractors in a EuroGeo survey possessed the necessary computational literacy,
mirroring our site observations where 63% of design adjustments required engineer
intervention.

Table 5. Implementation Challenges and Mitigation Pathways.

Barrier Metric Status  Target Solution
Computational . )
Cycle time 1.8 hrs <0.5hrs Edge computing
latency
Vol. 3 (2026) 232
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Data privacy . . . .
overhead Encryptionload  34.7%  <15% Federated learning
Traini
Skill gap ralm.ng 42% >75% AR-assisted interfaces
adoption
Multi-
Sensor reliability Data loss rate 5.2% <% ulti-sensor

redundancy

5.3. Future Integration Pathways

Two synergistic developments promise to overcome current limitations. Federated
learning architectures enable multi-project knowledge transfer without raw data
exchange: preliminary tests show this reduces encryption overhead to 12.3% while
maintaining 91% model accuracy [16]. Second, automated control systems integrating
robotic strut jacks could execute 78% of optimizations without human intervention. When
combined with digital twin simulations, these technologies may reduce decision latency
to under 15 minutes, potentially preventing 83% of deflection-related incidents according
to Federal Highway Administration incident databases (FHWA-NHI-23-045).

5.4. Sociotechnical Trade-offs

The framework's adoption necessitates resolving three tensions: accuracy vs. speed,
where Bayesian calibration improves precision but consumes 58% of cycle time (Section
3.4), with simplified surrogate models potentially accelerating updates during non-critical
phases; automation vs. liability, as while autonomous adjustments improve
responsiveness, contractual frameworks lack protocols for algorithmic decision
accountability; and model complexity vs. usability, given that contractors prioritized
interface intuitiveness over predictive sophistication in 89% of user trials [17]. These
challenges underscore the need for collaborative standards development involving
computational geotechnicians, contractors, and regulatory bodies.

6. Conclusion

This research has systematically demonstrated that integrating field measurements
with computational optimization fundamentally transforms the stability management
and deformation control of deep excavation support systems. The developed framework
establishes three pivotal advancements in geotechnical engineering practice: First, the
implementation of a Bayesian-updated digital twin enables continuous calibration of
finite element models using real-time inclinometer, strain gauge, and piezometer data,
resolving the persistent discrepancy between predicted and observed soil-structure
behavior. Validation across 1,372 optimization cycles at the 22.5-m Singapore MRT
excavation reduced prediction errors to 8.2% =+ 1.7%, contrasting sharply with
conventional methods exhibiting 25-40% inaccuracies. Second, the multi-objective NSGA-
III optimization quantifies critical trade-offs between deformation control, stability
assurance, and economic efficiency, achieving a 41.3% reduction in maximum wall
deflection while simultaneously lowering material costs by 29.4% compared to Eurocode
7 baselines. Third, sensitivity analyses revealed that strut preload optimization
contributes 52% to deformation mitigation, fundamentally reorienting design priorities
away from historical over-reliance on wall embedment depth.

The case study further established that adaptive control during critical construction
phases prevents escalation of anomalies: When unexpected artesian pressure induced
rapid deflection during Stage 5 excavation, the framework executed parameter
recalibration and design adjustments within 36 hours, eliminating structural interventions
that conventionally cost $120-$250k per incident according to Federal Highway
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Administration records. These capabilities collectively shift excavation support from
static design toward responsive risk management, where safety margins are dynamically
maintained through data-informed decision cycles rather than predetermined
conservative allowances.

Despite these achievements, two operational barriers require resolution for
widespread adoption. Computational latency averaging 1.8 hours per optimization cycle
currently exceeds the <0.5-hour threshold for real-time response during strut installation
or dewatering operations. Additionally, the 34.7% computational overhead from
homomorphic encryption for cross-institutional data sharing necessitates hardware
acceleration. Future iterations should implement edge computing architectures with field-
programmable gate arrays (FPGAs) to reduce processing time by 65-80%, alongside
federated learning protocols that enable knowledge transfer without raw data exchange.
Integration with robotic strut adjustment systems could further automate 78% of
optimization implementations, potentially reducing construction delays by 15-30 days for
major urban excavations.

The framework's scalability extends beyond diaphragm walls to secant pile and soil-
nailing systems, with preliminary simulations showing 28-33% cost savings in
heterogeneous geological profiles. Its capacity to convert distributed sensor networks into
actionable intelligence establishes a replicable template for infrastructure digitalization,
particularly valuable in seismic regions or coastal cities where groundwater dynamics
compound excavation risks. By transforming fragmented monitoring data into coherent
operational guidance, this research bridges a critical gap between theoretical
geomechanics and construction execution.

In broader context, this work exemplifies how physics-informed machine learning
revolutionizes geotechnical practice. The synthesis of domain knowledge (Bayesian soil
mechanics) with data-driven optimization creates systems that enhance both safety and
sustainability, reducing overdesign while preventing failures. The documented 29.4%
material savings translate to approximately 480 tonnes of carbon reduction per kilometer
of urban excavation, aligning with global decarbonization targets. As civil infrastructure
faces escalating demands from urbanization and climate change, such adaptive
frameworks will prove indispensable for constructing resilient underground spaces
within environmental and economic constraints. Future research should expand modality
integration through wireless smart aggregates and distributed fiber optic sensing,
advancing toward fully autonomous excavation systems that continuously reconcile
design assumptions with evolving ground responses.
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