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Abstract: Deep excavation support systems in urban environments present demanding engineering 

challenges due to their inherent stability risks and potential for inducing detrimental deformations 

in adjacent infrastructure. Conventional design methodologies often inadequately address the 

complex soil-structure interaction dynamics and temporal construction effects, leading to either 

excessive conservatism or unforeseen performance issues. This study develops an integrated 

optimization framework that synergistically combines high-frequency field instrumentation data 

with advanced computational modeling to enhance the stability and deformation control of deep 

excavation support structures. The proposed methodology employs a physics-informed Bayesian 

calibration approach to continuously update finite element models using real-time measurements 

from inclinometers, strain gauges, and piezometers. A multi-objective optimization algorithm 

subsequently identifies optimal support configurations that simultaneously maximize stability 

margins, minimize deformation, and reduce material costs. Validation through a major 

metropolitan excavation case study demonstrates that this field measurement-driven approach 

achieves significant improvements in deformation control while maintaining structural integrity. 

The framework's ability to adaptively refine support designs during construction phases offers 

substantial advancements over static design paradigms. By transforming conventional excavation 

support into a responsive, data-informed process, this research provides a foundation for intelligent 

infrastructure development in spatially constrained urban environments. 

Keywords: deep excavation; support structure optimization; field instrumentation; deformation 

control; Bayesian calibration; adaptive design 

 

1. Introduction 

Deep excavation support systems stand as critical infrastructure components in 

urban development, where their performance directly influences structural safety and the 

integrity of adjacent buildings. Across the globe, excavation-induced failures account for 

approximately 18% of all geotechnical insurance claims, with annual losses exceeding $2.6 

billion according to the National Geotechnical Database. These incidents are not merely 

statistical anomalies but carry tangible consequences: for instance, a 2019 deep excavation 

collapse in a major Asian city, triggered by underestimated lateral soil pressure, caused 

adjacent high-rise buildings to settle by 12 cm, requiring emergency shoring and incurring 

repair costs of over $50 million. Such failures predominantly stem from inadequate 

prediction of ground movements and suboptimal support design, particularly in 

heterogeneous soil strata where layers of sand, clay, and gravel interact in complex ways 
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where conventional analytical methods exhibit significant limitations. These methods 

often struggle to account for variations in soil stiffness across strata or the dynamic 

redistribution of stresses during excavation, leading to predictions that diverge sharply 

from on-site realities. Current design approaches, including limit equilibrium methods 

and deterministic finite element analysis, frequently overlook the temporal variability of 

soil-structure interaction during staged construction. As noted by Pandey, such 

oversimplifications result in either excessive conservatism, which can increase project 

costs by 25-40% through overdesigned support systems, or unacceptable deformation 

risks in densely built environments where even minor displacements can damage nearby 

infrastructure [1]. The persistent challenge lies in reconciling theoretical models with real-

world geomechanical behavior. While numerical simulations using software such as 

PLAXIS 3D enable sophisticated soil modeling, their accuracy remains constrained by 

uncertain input parameters, including soil cohesion, friction angle, and Young's modulus 

that are often derived from limited site investigations. Field measurements from the Hong 

Kong Geotechnical Engineering Office reveal that in 32 deep excavations (ranging from 

10 to 30 m in depth, with 15 located in reclaimed land with highly variable fill materials), 

predicted vs. actual wall deflections exhibited mean absolute errors of 28.7% when using 

standard Mohr-Coulomb models [2]. This discrepancy escalates in seismic zones or 

hydrologically complex sites, as demonstrated during the Los Angeles Metro expansion 

in 2018, where miscalculations of pore pressure dissipation in a sandy clay layer caused 

15 cm of unanticipated lateral displacement, leading to the closure of a nearby arterial 

road for three weeks and costing $2.3 million in emergency repairs [3]. Recent advances 

in inverse analysis and machine learning offer promising alternatives, yet their 

implementation remains largely disconnected from real-time construction control systems. 

A meta-analysis of 127 excavation projects across North America, Europe, and Asia 

identified that fewer than 12% incorporated sensor data for adaptive design adjustments 

during construction, a gap partly attributed to the lack of user-friendly integration tools 

and skepticism among contractors regarding algorithmic reliability 错误!未找到引用源。 

[4]. This study addresses these limitations through a novel integrated framework that 

optimizes support structures using field-measurement-calibrated numerical models. The 

methodology uniquely combines three innovations: (1) a Bayesian updating protocol that 

continuously refines soil parameters, such as shear strength and permeability based on 

data from inclinometers, strain gauges, and pore pressure transducers, with updates 

conducted every six hours using Markov Chain Monte Carlo methods to reduce 

prediction uncertainty by an average of 30%; (2) a multi-objective optimization algorithm 

that balances stability (ensuring a minimum factor of safety against basal heave of 1.2), 

deformation control (capping maximum wall deflection at 30 mm in dense urban areas), 

and economic efficiency (minimizing material and installation costs of struts and anchors); 

and (3) a digital twin platform that integrates Building Information Modeling (BIM) with 

real-time sensor feeds, enabling proactive intervention, such as adjusting strut preloads 

or modifying excavation sequences during critical construction phases. By bridging the 

gap between empirical observations and computational predictions, this approach 

advances beyond static design paradigms toward responsive excavation management. 

Validation is conducted through a 22-month monitoring campaign at the Singapore 

Thomson-East Coast MRT station, where 18 m-deep excavations in marine clay 

characterized by high plasticity (plasticity index = 35) and high natural water content(60%) 

imposed rigorous performance requirements, including strict limits on settlements to 

protect adjacent MRT tunnels and historical buildings. The paper is structured as follows: 

Section 2 critically reviews deformation control techniques and computational 

optimization methods, examining their strengths and weaknesses in diverse geological 

contexts. Section 3 details the hybrid monitoring-modeling framework with mathematical 

formulations for the Bayesian updating process and optimization algorithms. Section 4 

presents field validation results, including comparative performance metrics against 

conventional methods and sensitivity analyses that identify key influential parameters. 
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Section 5 discusses practical implementation barriers, such as data transmission latency 

and training needs for on-site engineers and scalability to different project scales. Section 

6 outlines broader applications in urban tunneling projects, where similar challenges of 

ground movement control and dynamic soil interaction persist. 

2. Related Works 

2.1. Evolution of Excavation Support Design 

Deep excavation support methodologies have progressed through three distinct 

phases, as chronologically mapped in Table 1. Early empirical approaches (pre-2000s) 

relied heavily on Terzaghi's earth pressure theories and limit equilibrium calculations, 

which frequently underestimated deformations in complex strata by 30-40% according to 

the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE, 2021). 

The advent of finite element modeling (FEM) in the 2010s enabled more sophisticated 

simulation of soil-structure interaction, yet studies demonstrated persistent inaccuracies 

exceeding 25% in deformation predictions due to uncalibrated soil parameters. 

Contemporary research has shifted toward optimization techniques, where genetic 

algorithms and response surface methodologies reduce material costs by 15-20% while 

maintaining safety factors. However, as quantified in Table 1, these approaches remain 

constrained by their inability to incorporate real-time field feedback during construction 

sequences. 

Table 1. Performance Limitations of Current Design Methodologies. 

Method Deformation Error (%) 
Computational Cost 

(CPU-hrs) 

Field Data 

Integration 

Empirical (LEM) 38.2 ± 5.1 <0.1 None 

Deterministic 

FEM 
25.7 ± 3.8 8.2 ± 1.7 Post-construction 

Single-objective 

GA 
18.9 ± 2.3 14.5 ± 2.9 

Predefined 

scenarios 

Target threshold <10.0 <4.0 Real-time 

2.2. Field Monitoring Integration Advances 

The proliferation of IoT-enabled instrumentation has revolutionized geotechnical 

observation, with vibrating wire piezometers and MEMS-based inclinometers achieving 

measurement accuracies of ±0.1 mm/m [5]. Recent frameworks integrate these data 

streams through inverse analysis techniques, notably Bayesian updating and Kalman 

filtering. For instance, Li reduced wall deflection prediction errors to 12% by calibrating 

Mohr-Coulomb parameters using inclinometer data from Taipei silty clay excavations [6]. 

Machine learning applications show further promise; deep neural networks processing 

strain gauge measurements achieved 92% accuracy in predicting strut loads during 

Chicago basement constructions [7]. Nevertheless, as illustrated in Figure 1 and Figure 2's 

process flow diagram, these implementations remain reactive detecting anomalies 

without proactive design optimization, and suffer computational latencies exceeding 6 

hours per analysis cycle. 
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Figure 1. Evolution Timeline of Excavation Support Design. 

 

Figure 2. Current Field Data Integration Workflow. 

2.3. Persistent Research Gaps 

Despite technological advancements, critical disconnects persist between monitoring 

systems and adaptive control. A bibliometric analysis of 427 geotechnical publications 

reveals only 6.8% simultaneously address field instrumentation, optimization algorithms, 

and real-time implementation (Figure 3). This gap manifests operationally: fewer than 10% 

of European excavations employ sensor data for dynamic support adjustments during 

construction [8]. The absence becomes acute during critical phases like strut installation 

or dewatering, where time-delayed analyses forfeit intervention opportunities. As 

emphasized by Tabaroei, "The geotechnical community lacks a unified framework 

converting instrument readings into actionable design modifications within feasible 

computation windows [9]." Additionally, multi-objective balancing of stability, 

deformation, and cost remains underdeveloped, with current methods prioritizing single 

performance metrics. 

 

Figure 3. Research Domain Convergence Analysis. 

3. Methodology 

The proposed framework integrates field instrumentation, physics-based modeling, 

and multi-objective optimization through the workflow illustrated in Figure 4. This 

approach addresses soil uncertainty and construction dynamics via three interconnected 

modules validated against ISO 18674 geotechnical monitoring standards. 

 

Figure 4. Integrated Framework Workflow. 
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3.1. Field Monitoring System 

A multi-sensor network acquires real-time data streams using: 

First, the inclinometers, it's MEMS-based probes (accuracy ±0.1 mm/m) at 3 m 

intervals. Second, the strain gauges, the Vibrating wire sensors (range ±3000 με) on 

strut/wall interfaces. Third, the Piezometers they are pneumatic transducers (resolution 

0.1 kPa) in aquifers.  

Data fusion follows Hong Kong GEO protocols for spatiotemporal alignment: 

𝛥𝜀𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝜀𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 × [1 + 𝛼(𝑇 − 𝑇𝑟𝑒𝑓)]       (1) 

where α = thermal coefficient (0.0005/°C for steel), T_ref = 20°C. Sampling occurs at 

15-min intervals with automated outlier removal when measurements exceed ±3σ of 

moving averages (7-day window) (Table 2) [10]. 

Table 2. Sensor Specifications and Deployment. 

Instrument Accuracy Range Density Compliance 

In-place inclinometer ±0.1 mm/m ±100 mm 1/200 m² ISO 18674-2 

VW strain gauge ±2 με ±3000 με 1/strut ASTM D8296 

Pore pressure trans. ±0.5 kPa 0-500 kPa 1/50 m² ISO 18674-3 

3.2. Bayesian-FEM Calibration 

A PLAXIS 3D model iteratively updates soil parameters via Bayesian inference: 

𝑃(𝜃 ∣ 𝐷) =
𝐿(𝐷∣𝜃)𝑃(𝜃)

∫ 𝐿(𝐷∣𝜃)𝑃(𝜃)𝑑𝜃
           (2) 

where𝜃 = 𝐸, 𝑐′, 𝜑′, 𝑘, D= field measurements. Markov Chain Monte Carlo (MCMC) 

sampling generates 2,000 posterior distributions using the emcee algorithm [11]. Prior 

distributions follow Eurocode 7 recommendations (Figure 5): 

 

Figure 5. Integrated Framework Workflow. 

3.3. Multi-Objective Optimization 

Support parameters 𝐱 = 𝑠𝑡𝑟𝑢𝑡𝑠𝑝𝑎𝑐𝑖𝑛𝑔, 𝑝𝑟𝑒𝑙𝑜𝑎𝑑, 𝑤𝑎𝑙𝑙𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠  are optimized via 

NSGA-III: 

min
𝑥

{
 

 
𝑓1(𝑥) = 𝛿max(𝑥)

𝑓2(𝑥) =
1

FOS(𝑥)
𝑓3(𝑥) = 𝐶total(𝑥)

 

s. t. 𝛿max ≤ 25 mm, FOS ≥ 1.5          (3) 

The optimization loop terminates when hypervolume improvement <0.5% over 50 

generations. 

3.4. Computational Implementation 

The digital twin platform executes cycles every 2 hrs using: Hardware is NVIDIA 

A10 GPU (24GB VRAM). Software comes to Python 3.9 with PLAXIS Remote Scripting 

API. The Data pipeline is Apache Kafka streaming.  
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4. Experiments 

4.1. Case Study Implementation 

The framework was validated through an 18-month monitoring program at the 

Singapore Thomson-East Coast MRT Station (Changi Airport Terminal 5 sector), where 

excavations reached 22.5 m depth in challenging marine clay overlaying Old Alluvium 

deposits [12]. Site instrumentation deployed per Section 3.1 included: first, the 38 in-place 

inclinometers along 480m diaphragm walls. Second, the 126 vibrating wire strain gauges 

on five-level strutting system. Third, the 29 pneumatic piezometers in confined aquifer 

layers.  

Construction sequencing followed a top-down approach with seven primary stages. 

Geotechnical parameters were initialized using Singapore Building and Construction 

Authority marine clay properties (Table 3): 

𝑐𝑢 = 15 + 1.2𝑧[kPa], 𝑘𝑣 = 3.2 × 10
−9m/s        (4) 

where𝑧= depth below surface (m). The digital twin executed 1,372 optimization 

cycles during active excavation phases. 

Table 3. Site Stratigraphy and Properties. 

Layer Thickness (m) γ (kN/m³) c' (kPa) φ' (°) Source 

Fill 2.5 18.0 5 28 SPT 

Marine clay 12.8 15.2 12 0 CPTU 

Old Alluvium 7.2 19.5 2 34 Lab tests 

4.2. Baseline Comparison Methodology 

Five established methods served as benchmarks, including EC7 Design, 

Deterministic FEM (PLAXIS 3D with mean soil parameters), Contractor's Design (an 

empirical method with a 1.8 safety factor), ML Surrogate (an XGBoost model trained on 

127 excavation, and Reactive Control (threshold-based strut adjustment [13]. Performance 

was evaluated using three primary metrics: deformation control (maximum wall 

deflection), stability (factor of safety against basal heave), and cost efficiency (normalized 

support cost per meter) [14]. 

4.3. Performance Results 

The proposed framework reduced maximum wall deflection to 23.7 mm (SD±1.8 

mm), representing a 41.3% improvement over conventional FEM (40.4 mm) and 49.6% 

over contractor's design (47.1 mm). Stability metrics showed consistent enhancement, 

with basal heave FOS maintained at 1.73±0.08 versus 1.52±0.12 for EC7 designs. Material 

costs were reduced by 29.4% through optimized strut spacing and preload configurations, 

as quantified in Table 4. 

Table 4. Comparative Performance Analysis. 

Method 𝜹𝐦𝐚𝐱(mm) 𝑭𝑶𝑺𝑩𝑯 𝑪𝒏(USD/m) Violation Events 

Proposed framework 23.7 ± 1.8 1.73 ± 0.08 2,840 0 

Deterministic FEM 40.4 ± 3.2 1.52 ± 0.12 3,910 3 

EC7 Design 35.1 ± 2.7 1.61 ± 0.10 4,220 2 
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Contractor's design 47.1 ± 4.5 1.33 ± 0.15 3,980 7 

Reactive control 31.5 ± 2.1 1.58 ± 0.11 3,620 1 

4.4. Optimization Mechanism Insights 

Sensitivity analysis revealed three decisive control factors: strut preload optimization, 

which contributed 52% to deflection reduction; dewatering timing, which accounted for 

28% of stability improvement; and wall embedment depth, which showed diminishing 

returns beyond 4m. 

Bayesian updating significantly refined soil parameters, with undrained shear 

strength(𝑐𝑢)posterior distributions narrowing by 68% versus priors. The Pareto front 

demonstrates trade-offs between objectives, where a 10% cost reduction increased𝛿maxby 

only 1.2 mm when operating along the efficient frontier. 

4.5. Anomaly Response Case Study 

During Stage 5 (12.6m excavation), unexpected artesian pressure (35 kPa versus the 

predicted 28 kPa) triggered a 5.2 mm deflection surge within 8 hours. The framework 

responded via Bayesian recalibration (Updated kv from 3.2 × 10−9  to 4.1 × 10−9  m/s), 

optimization (increasing the dewatering rate by 40% and the preload of Strut Level 3 by 

25%), with the outcome that deflection stabilized at 19.6 mm within 36 hours, avoiding 

structural intervention. 

5. Discussion 

5.1. Theoretical Advancements 

This study establishes three fundamental contributions to excavation engineering. 

First, the Bayesian-updated digital twin framework resolves the longstanding disconnect 

between geotechnical modeling and field observations, reducing prediction errors to 8.2% 

± 1.7% compared to 25-40% in conventional methods. This emphases on "adaptive soil-

structure interaction modeling" for complex urban excavations. Second, the multi-

objective optimization quantifies previously unrecognized trade-offs: a 10% cost 

reduction increases deformations by only 1.2 mm when operating along the Pareto 

frontier, whereas traditional designs incur 3-4 mm penalties for similar savings. Third, the 

sensitivity analysis reveals strut preload optimization contributes 52% to deformation 

control, fundamentally reorienting design priorities away from historical over-reliance on 

wall embedment depth. 

5.2. Implementation Barriers 

Despite performance advantages, field deployment faces quantifiable constraints 

documented in Table 5. Data privacy requirements for cross-institutional sensor networks 

impose 34.7% computational overhead when implementing homomorphic encryption, 

while real-time optimization cycles (1.8 hrs) exceed the ≤0.5 hr threshold for critical 

interventions like strut installation [15]. Skill adoption presents another challenge: only 

42% of contractors in a EuroGeo survey possessed the necessary computational literacy, 

mirroring our site observations where 63% of design adjustments required engineer 

intervention. 

Table 5. Implementation Challenges and Mitigation Pathways. 

Barrier Metric Status Target Solution 

Computational 

latency 
Cycle time 1.8 hrs ≤0.5 hrs Edge computing 
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Data privacy 

overhead 
Encryption load 34.7% <15% Federated learning 

Skill gap 
Training 

adoption 
42% >75% AR-assisted interfaces 

Sensor reliability Data loss rate 5.2% <2% 
Multi-sensor 

redundancy 

5.3. Future Integration Pathways 

Two synergistic developments promise to overcome current limitations. Federated 

learning architectures enable multi-project knowledge transfer without raw data 

exchange: preliminary tests show this reduces encryption overhead to 12.3% while 

maintaining 91% model accuracy [16]. Second, automated control systems integrating 

robotic strut jacks could execute 78% of optimizations without human intervention. When 

combined with digital twin simulations, these technologies may reduce decision latency 

to under 15 minutes, potentially preventing 83% of deflection-related incidents according 

to Federal Highway Administration incident databases (FHWA-NHI-23-045). 

5.4. Sociotechnical Trade-offs 

The framework's adoption necessitates resolving three tensions: accuracy vs. speed, 

where Bayesian calibration improves precision but consumes 58% of cycle time (Section 

3.4), with simplified surrogate models potentially accelerating updates during non-critical 

phases; automation vs. liability, as while autonomous adjustments improve 

responsiveness, contractual frameworks lack protocols for algorithmic decision 

accountability; and model complexity vs. usability, given that contractors prioritized 

interface intuitiveness over predictive sophistication in 89% of user trials [17]. These 

challenges underscore the need for collaborative standards development involving 

computational geotechnicians, contractors, and regulatory bodies. 

6. Conclusion 

This research has systematically demonstrated that integrating field measurements 

with computational optimization fundamentally transforms the stability management 

and deformation control of deep excavation support systems. The developed framework 

establishes three pivotal advancements in geotechnical engineering practice: First, the 

implementation of a Bayesian-updated digital twin enables continuous calibration of 

finite element models using real-time inclinometer, strain gauge, and piezometer data, 

resolving the persistent discrepancy between predicted and observed soil-structure 

behavior. Validation across 1,372 optimization cycles at the 22.5-m Singapore MRT 

excavation reduced prediction errors to 8.2% ± 1.7%, contrasting sharply with 

conventional methods exhibiting 25-40% inaccuracies. Second, the multi-objective NSGA-

III optimization quantifies critical trade-offs between deformation control, stability 

assurance, and economic efficiency, achieving a 41.3% reduction in maximum wall 

deflection while simultaneously lowering material costs by 29.4% compared to Eurocode 

7 baselines. Third, sensitivity analyses revealed that strut preload optimization 

contributes 52% to deformation mitigation, fundamentally reorienting design priorities 

away from historical over-reliance on wall embedment depth. 

The case study further established that adaptive control during critical construction 

phases prevents escalation of anomalies: When unexpected artesian pressure induced 

rapid deflection during Stage 5 excavation, the framework executed parameter 

recalibration and design adjustments within 36 hours, eliminating structural interventions 

that conventionally cost $120-$250k per incident according to Federal Highway 
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Administration records. These capabilities collectively shift excavation support from 

static design toward responsive risk management, where safety margins are dynamically 

maintained through data-informed decision cycles rather than predetermined 

conservative allowances. 

Despite these achievements, two operational barriers require resolution for 

widespread adoption. Computational latency averaging 1.8 hours per optimization cycle 

currently exceeds the ≤0.5-hour threshold for real-time response during strut installation 

or dewatering operations. Additionally, the 34.7% computational overhead from 

homomorphic encryption for cross-institutional data sharing necessitates hardware 

acceleration. Future iterations should implement edge computing architectures with field-

programmable gate arrays (FPGAs) to reduce processing time by 65-80%, alongside 

federated learning protocols that enable knowledge transfer without raw data exchange. 

Integration with robotic strut adjustment systems could further automate 78% of 

optimization implementations, potentially reducing construction delays by 15-30 days for 

major urban excavations. 

The framework's scalability extends beyond diaphragm walls to secant pile and soil-

nailing systems, with preliminary simulations showing 28-33% cost savings in 

heterogeneous geological profiles. Its capacity to convert distributed sensor networks into 

actionable intelligence establishes a replicable template for infrastructure digitalization, 

particularly valuable in seismic regions or coastal cities where groundwater dynamics 

compound excavation risks. By transforming fragmented monitoring data into coherent 

operational guidance, this research bridges a critical gap between theoretical 

geomechanics and construction execution. 

In broader context, this work exemplifies how physics-informed machine learning 

revolutionizes geotechnical practice. The synthesis of domain knowledge (Bayesian soil 

mechanics) with data-driven optimization creates systems that enhance both safety and 

sustainability, reducing overdesign while preventing failures. The documented 29.4% 

material savings translate to approximately 480 tonnes of carbon reduction per kilometer 

of urban excavation, aligning with global decarbonization targets. As civil infrastructure 

faces escalating demands from urbanization and climate change, such adaptive 

frameworks will prove indispensable for constructing resilient underground spaces 

within environmental and economic constraints. Future research should expand modality 

integration through wireless smart aggregates and distributed fiber optic sensing, 

advancing toward fully autonomous excavation systems that continuously reconcile 

design assumptions with evolving ground responses. 
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