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Abstract: The increasing complexity of modern industrial processes, characterized by frequent 

disturbances such as equipment failures and urgent order changes, demands more adaptive 

scheduling solutions. Traditional centralized scheduling methods often fail to address real time 

dynamics, while existing multi agent systems face challenges in balancing local autonomy with 

global optimization. This study proposes a novel dynamic scheduling strategy integrating multi 

agent collaboration with a credit based coordination mechanism to enhance responsiveness and 

efficiency in complex industrial environments. The research develops a three layer agent 

architecture comprising resource, task, and coordinator agents, linked through an event driven 

communication protocol. A hybrid negotiation framework enables both rapid response to 

emergencies and deliberative optimization for long term scheduling. The core innovation lies in a 

dynamic credit allocation model that evaluates agents' historical performance and collaborative 

contributions to guide task assignment. These findings advance distributed industrial control theory 

by formalizing the relationship between agent incentives and system wide performance. The 

proposed approach provides actionable insights for implementing Industry 4.0 adaptive scheduling 

in discrete manufacturing sectors. 
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1. Introduction 

The Fourth Industrial Revolution has ushered in an era of unprecedented complexity 

in manufacturing systems, where dynamic disruptions-such as machine breakdowns, 

fluctuating order priorities, and supply chain volatility-have become pervasive. This 

revolution represents a major focus in the field of manufacturing, driving transformative 

changes across production processes [1]. Since the First Industrial Revolution, successive 

waves of industrial advancement have radically reshaped manufacturing, from steam-

powered machinery to automated electrical systems and digital production. 

Contemporary manufacturing processes have grown increasingly complex, automated, 

and sustainable, enabling operators to manage machines more efficiently, effectively, and 

continuously [2]. Industries ranging from semiconductor fabrication to chemical 

processing face mounting challenges in maintaining production efficiency under such 

conditions. Traditional scheduling approaches, often based on static assumptions and 

centralized optimization models, prove inadequate in these dynamic environments due 

to their limited capacity to respond to real-time disturbances. While deterministic 

methods, such as linear programming, perform well in stable scenarios, their rigidity 
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results in suboptimal outcomes when confronted with the inherent unpredictability of 

modern shop floors [3]. This shortfall has fueled growing interest in decentralized 

paradigms, particularly multi-agent systems (MAS), which emulate the adaptability of 

natural systems through distributed decision-making and autonomous negotiation. MASs 

constitute a well-established branch of Artificial Intelligence (AI), and over the past two 

decades, numerous agent platforms have emerged to facilitate the development of MASs 

[4]. 

At the core of dynamic scheduling lie three interdependent challenges: real-time 

disturbance management, constrained resource allocation, and multi-objective 

optimization. In recent years, much effort been devoted to addressing the challenges 

brought by large-scale multi-objective optimization problems [5]. The optimization 

problems that must meet more than one objective are called multi-objective optimization 

problems and may present several optimal solutions [6]. Current MAS implementations, 

though promising, struggle to reconcile two fundamental requirements: preserving 

individual agents' autonomy for rapid local responses while ensuring system-wide 

coordination for global optimization. MASs can solve scientific issues related to complex 

systems that are difficult or impossible for a single agent to solve through mutual 

collaboration and cooperation optimization [7]. A MAS contains multiple, intelligent, and 

interconnected collaborating agents for solving a problem beyond the ability of a single 

agent [8]. Many existing frameworks either prioritize swift reaction to disruptions at the 

expense of overall efficiency or impose excessive coordination overhead that negates the 

advantages of distributed architecture. This tension manifests conspicuously in scenarios 

requiring concurrent handling of urgent equipment failures and long-term production 

planning, where neither purely reactive nor strictly centralized approaches deliver 

satisfactory performance. 

This study addresses these limitations through a novel integration of hybrid 

negotiation protocols with a credit-based coordination framework. The proposed strategy 

introduces a three-tiered agent architecture that differentiates between resource, task, and 

coordinator roles, enabling specialized behaviors tailored to distinct operational 

requirements. A dual-mode decision-making mechanism allows agents to switch between 

expedited emergency response and deliberative optimization phases based on situational 

criticality. The system's innovation centers on a dynamic credit allocation model that 

quantifies and rewards agents' collaborative contributions, creating emergent incentives 

for both individual competence and collective success. 

By bridging the gap between local autonomy and global objectives, this research 

advances the theoretical foundations of industrial MAS applications. The methodology 

offers practical solutions for implementing adaptive scheduling in Industry 4.0 

environments, particularly in discrete manufacturing sectors where the interplay between 

flexibility and efficiency determines competitive advantage. Beyond immediate 

productivity gains, the study provides a scalable framework for integrating autonomous 

systems with human oversight, charting a path toward more resilient and self-organizing 

production ecosystems. The subsequent sections detail the technical architecture, 

validation approach, and broader implications of this paradigm. 

2. Related Works 

Scheduling is an important problem for many applications, including manufacturing, 

transportation, or cloud computing [9]. The evolution of industrial scheduling 

methodologies reveals a clear trajectory from rigid, centralized systems toward adaptive, 

decentralized paradigms. Effective scheduling ensures the availability of necessary 

resources and determines the timing and sequence of operations [10]. Classical scheduling 

theories established foundational principles through deterministic approaches like 

Johnson's rule for flow shop sequencing and PERT/CPM for project timeline management. 

These methods excel in stable environments where all parameters are known in advance, 
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as illustrated in Table 1 comparing their characteristics. However, their reliance on static 

assumptions becomes problematic when handling real-world variability, prompting the 

development of dynamic response methods such as rolling horizon optimization (RHO). 

RHO methods are relevant to recurrent and dynamic problems where immediate 

decisions must be made while they depend on upcoming ones [11]. While RHO improves 

upon purely static approaches by periodically updating schedules, its computational 

intensity often creates decision-making latency during high-frequency disruption 

scenarios. 

Table 1. Comparison of classical scheduling methodologies. 

Method Type Key Strength Primary Limitation Ideal Use Case 

Johnson's Rule Optimal sequencing Single-machine focus 
Repetitive 

manufacturing  

PERT/CPM Timeline visualization Static dependencies Construction projects 

Rolling Horizon Incremental updates 
Computational 

overhead 

Medium-variability 

systems 

The emergence of MAS introduced transformative capabilities through distributed 

artificial intelligence. MASs may serve the purpose of modeling several different 

problems where interacting agents are present [12]. With the rapid technological 

advancements and the ever-evolving complex systems, the identification and integration 

of the components and resources for the functioning of MAS are crucial tasks [13]. 

Contract Net Protocol, the seminal MAS coordination mechanism, has undergone 

significant evolution from its original auction-based task allocation to contemporary 

versions incorporating trust metrics and quality-of-service parameters. Recent 

advancements integrate reinforcement learning algorithms, particularly DeepMind's 

work on hierarchical reinforcement learning, enabling agents to develop sophisticated 

negotiation strategies through environmental interactions. Figure 1 demonstrates this 

progression through a knowledge graph mapping key developments in MAS frameworks, 

highlighting how modern implementations combine communication protocols with 

machine learning components. 

 

Figure 1. Evolutionary knowledge graph of MAS frameworks. 

Industrial applications showcase these theoretical advancements in operational 

environments. Siemens' digital twin implementations employ heterogeneous agent 

architectures where equipment agents interact with virtual replicas to predict 

maintenance needs, while Tesla's factory scheduling system demonstrates how localized 

autonomy can improve production line reconfiguration speed by 40%. The digital twin is 

an emerging and vital technology for digital transformation and intelligent upgrade [14]. 

Digital Twin refers to the virtual copy or model of any physical entity (physical twin) both 

of which are interconnected via exchange of data in real time [15]. However, as revealed 
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in the sector analysis of Figure 2, these implementations frequently encounter challenges 

when unexpected events require cross-departmental coordination, often resulting in 

delayed response times that negate the benefits of local autonomy. The manufacturing 

sector exhibits particularly pronounced gaps in handling concurrent disruptions, where 

conventional MAS approaches struggle to maintain both global optimization and local 

responsiveness. 

 

Figure 2. Sector-wise analysis of MAS implementation challenges. 

Critical examination of existing literature reveals three persistent limitations: first, 

the trade-off between communication overhead and decision quality remains unresolved 

in most MAS designs; second, few systems incorporate mechanisms for long-term 

behavioral adaptation beyond immediate task allocation; third, industrial 

implementations frequently lack transparent metrics for evaluating agent contributions to 

system-wide objectives. These gaps collectively underscore the need for integrated 

solutions that combine the responsiveness of distributed systems with mechanisms for 

sustained performance improvement, forming the theoretical foundation for the credit-

based coordination model proposed in this research. The evolution of industrial IoT 

platforms has enabled more sophisticated equipment monitoring, but current systems 

often treat data collection and decision-making as separate processes. Our approach 

bridges this divide by embedding performance evaluation directly within the scheduling 

architecture. The credit model's dual focus on individual capability development and 

system-wide coordination mirrors emerging trends in industrial AI that emphasize both 

component-level intelligence and collective optimization. The subsequent methodology 

section addresses these challenges through a novel architectural approach that maintains 

referential integrity with these established research streams while introducing innovative 

solutions to their identified shortcomings. 

3. Methodology 

The proposed dynamic scheduling framework adopts a three-layer agent 

architecture as illustrated in Figure 3, which demonstrates the information flow between 

resource agents (RAs), task agents (TAs), and coordinator agents (CAs). RAs operate at 

the physical equipment level, continuously monitoring machine states through embedded 

IoT sensors. Their operational status follows a nonlinear activation function: 

𝑅𝐴𝑎𝑐𝑡𝑖𝑣𝑒 =
1

1+𝑒−𝑘(𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡−𝑈𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)         (1) 

 

Figure 3. Tri-level agent communication network. 
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where 𝑈𝑐𝑢𝑟𝑟𝑒𝑛𝑡  represents real-time utilization rate and 𝑘  denotes the sensitivity 

coefficient. TAs manage order fulfillment with priority dynamics modeled by: 

𝑃𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑃𝑏𝑎𝑠𝑒 ∙ (1 + 𝛼 ∙ 𝑡𝑑𝑒𝑙𝑎𝑦)−1 + 𝛽 ∙ 𝐼𝑚𝑎𝑟𝑘𝑒𝑡       (2) 

Coordinator agents synthesize inputs using a fusion algorithm: 

𝐶𝐴𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝜎𝑛
𝑖=1 (𝑤𝑖 ∙ (𝑅𝐴𝑖 ∥ 𝑇𝐴𝑖))        (3) 

The event-driven collaboration protocol switches between rapid response and deep 

negotiation modes based on a criticality index (Table 2 details the triggering thresholds). 

The criticality calculation incorporates three operational dimensions: 

𝛤 =
𝜆1∙‖𝛻𝑈‖+𝜆2∙𝑡𝑢𝑟𝑔𝑒𝑛𝑐𝑦

𝜆3∙𝑅𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
           (4) 

Table 2. Mode switching thresholds. 

Scenario Γ Range Response Time 

Emergency Interrupt Γ > 1.5 50ms 

 Normal Operation 0.5 ≤ Γ ≤1.5 50-200ms 

Strategic Optimization Γ < 0.5 200ms 

Credit-based optimization employs a dynamic weighting mechanism where agent 

performance metrics evolve through temporal difference learning: 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 + 𝜂 ∙ (𝑅𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) ∙
𝜕𝑉

𝜕𝑤𝑖
        (5) 

The composite credit score combines normalized historical performance 𝐻, resource 

efficiency 𝑅, and collaboration factor 𝑆: 

𝐶𝑖 =
𝑤𝐻∙𝐻𝑖+𝑤𝑅∙𝑅𝑖+𝑤𝑆∙𝑆𝑖

√𝑤𝐻
2 +𝑤𝑅

2 +𝑤𝑆
2

           (6) 

The credit accumulation process exhibits distinct phase transitions corresponding to 

different production stages. Early-cycle credit distribution follows exponential growth 

patterns as agents establish baseline competencies, while mid-cycle accumulation 

becomes logarithmic as the system approaches equilibrium. This nonlinear progression 

enables the framework to maintain adaptability during both routine operations and peak 

demand periods where throughput requirements may fluctuate by up to 40%. 

Figure 4 visualizes the credit distribution across a production cycle, showing how 

different agent types develop distinct credit accumulation patterns. The xychart reveals 

coordinator agents initially accumulate credits slower but achieve higher long-term 

stability. 

 

Figure 4. Credit accumulation trajectories. 

Conflict resolution combines case-based reasoning with multi-objective optimization. 

The similarity metric between new conflict 𝑐 and historical case ℎ incorporates temporal 

decay: 

𝑆𝑖𝑚(𝑐, ℎ) =
∑ 𝜙𝑘∙𝑚𝑎𝑡𝑐ℎ(𝑓𝑘

𝑐,𝑓𝑘
ℎ)𝐾

𝑘=1

1+𝛼∙∆𝑡𝑐ℎ
          (7) 

                                        

                 
             

        

    

           

 

   

   

   

   

   

   

   

   

   

 

 
  
 
  
  
 
 
  



Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS 

 

Vol. 3 (2026) 222  

Pareto frontier selection employs normalized objective space projection: 

𝑓𝑖 =
𝑓𝑖−𝑚𝑖𝑛(𝑓𝑖)

𝑚𝑎𝑥(𝑓𝑖)−𝑚𝑖𝑛(𝑓𝑖)
   ∀𝑖 ∈ {1, . . . , 𝑚}         (8) 

The complete system dynamics are governed by a coupled differential equation 

system: 
𝑑𝑋

𝑑𝑡
= 𝐴(𝑡)𝑋 + 𝐵𝑈 + ∑ 𝐷𝑗𝜉𝑗(𝑡)𝐽

𝑗=1          (9) 

where 𝑋 represents the state vector and 𝜉𝑗(𝑡) models stochastic disturbances. This 

mathematical formulation ensures both theoretical rigor and practical implementability 

in industrial environments with uncertain dynamics. The subsequent case study will 

validate these models through discrete-event simulation of automotive assembly lines. 

4. Case Study 

The experimental validation was conducted on a lithium-ion battery production line 

simulation developed using AnyLogic 8.7.2, replicating an industrial-scale manufacturing 

environment with 14 workstations and 31 process steps. Figure 5 presents the system 

architecture, showing how physical production components including electrode mixing, 

coating, and formation chambers are mapped to their corresponding digital twin 

representations. The simulation incorporates realistic stochastic parameters such as 

equipment failure rates (λ=0.003/min) and material delivery delays (μ=45min, σ=12min), 

creating a challenging environment to evaluate the proposed framework's robustness. 

Comparative analysis was performed against two baseline methods: a conventional 

mixed-integer linear programming (MILP) approach with hourly rescheduling, and a 

basic multi-agent system implementing standard FIPA protocols without credit 

mechanisms. 

 

Figure 5. Digital twin implementation framework. 

Performance evaluation focused on three key metrics: order fulfillment rate (OFR), 

overall equipment effectiveness (OEE), and rescheduling frequency. Table 3 compares 

these metrics across 50 production cycles under normal and disrupted conditions, 

demonstrating the framework's superior adaptability. The disruption scenarios included 

material shortages (occurring with 18% probability per cycle) and dynamic priority 

changes (affecting 25% of orders), designed to test both supply chain volatility and 

demand variability responsiveness. 

Table 3. Operational performance comparison. 

Method OFR (%) OEE (%) Reschedules 
Energy Use 

(kWh) 

Proposed MAS 97.5 90.2 1.6 1250 

Basic MAS 93.1 85.7 3.4 1380 

MILP 89.8 82.4 5.8 1450 

Analysis of the coating workstation, identified as the primary bottleneck, reveals 

significant improvements through credit-based task allocation. Figure 6 illustrates the 

utilization optimization trajectory, where the proposed framework achieved 91.3% 
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efficiency compared to 86.5% for basic MAS and 83.2% for MILP. The xy-chart 

demonstrates faster stabilization and higher peak performance, attributed to the credit 

system's ability to identify and reward high-performing resource agents for bottleneck 

tasks. 

 

Figure 6. Bottleneck workstation optimization. 

The credit model's behavioral guidance effects are visualized in Figure 7 through a 

parallel coordinates plot, tracking five key capability metrics across three development 

phases. Most notably, collaborative success rates improved from 62% to 86%, while 

resource utilization efficiency increased from 71% to 89%. These metrics demonstrate how 

the credit system promotes both individual competency development and system-wide 

cooperation. 

 

Figure 7. Agent capability evolution pathways. 

The case study demonstrates the framework's effectiveness in addressing three 

critical challenges: maintaining production stability during disturbances (achieving 94.2% 

OFR during disruption periods), optimizing bottleneck resources, and fostering adaptive 

agent behaviors. These results suggest particular applicability in battery manufacturing 

where production variability and quality consistency are paramount. The credit 

mechanism proves especially valuable in balancing global optimization with local 

responsiveness, reducing rescheduling needs by 53% compared to conventional MAS 

approaches while improving overall equipment effectiveness by 4.5 percentage points. 

Further analysis of agent interaction patterns revealed emergent specialization, where 

certain resource agents developed domain expertise in specific process steps. This self-
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organizing behavior resulted in 22% faster response times for recurring disturbance types. 

The credit system's ability to identify and reinforce such specialization patterns 

contributes significantly to the framework's performance advantages in high-variability 

conditions. These findings validate the methodology's potential for broader industrial 

adoption in dynamic production environments. 

5. Conclusion 

The study establishes significant theoretical and practical contributions to dynamic 

scheduling in complex industrial environments through its innovative integration of 

multi-agent collaboration with credit-based coordination mechanisms. Theoretically, the 

research validates that the proposed credit allocation model effectively bridges the 

fundamental tension between local autonomy and global optimization in multi-agent 

systems, as demonstrated by the 53% reduction in rescheduling frequency and 4.5 

percentage point improvement in overall equipment effectiveness compared to 

conventional MAS approaches. The case study's empirical evidence confirms that the 

dynamic credit mechanism not only enhances system stability during disruptions but also 

fosters emergent behavioral patterns where agents progressively develop both individual 

competencies and collaborative tendencies, as reflected in the 24% increase in 

collaborative success rates across production cycles. Practically, the framework's three-

layer agent architecture and hybrid negotiation protocol offer scalable solutions for 

discrete manufacturing sectors, particularly in high-variability production environments 

like lithium-ion battery manufacturing where the methodology achieved 91.3% bottleneck 

workstation efficiency. The architecture's modular design suggests strong potential for 

extension to hybrid discrete-continuous production systems common in pharmaceuticals 

and specialty chemicals, where balancing flexible scheduling with rigorous quality control 

remains challenging. Looking forward, the research identifies promising opportunities for 

integrating the credit-based coordination framework with digital thread technologies to 

enable lifecycle-wide performance tracking and predictive scheduling adjustments. The 

methodology's event-driven communication protocol and adaptive credit algorithms 

provide foundational components for such integration, though future work should 

address computational scalability when handling enterprise-wide data flows. This study 

ultimately advances industrial control theory by formalizing the relationship between 

incentive structures and emergent system behaviors while delivering implementable 

solutions for Industry 4.0 environments that demand both operational resilience and 

continuous improvement. The framework's success in maintaining 94.2% order 

fulfillment during disruption periods while reducing energy consumption by 9% 

compared to baseline methods underscores its dual capacity to address contemporary 

manufacturing challenges in efficiency and sustainability. The methodology's success in 

battery manufacturing suggests broader applicability in other process-intensive 

industries with similar characteristics, particularly where equipment utilization rates 

exceed 75% and changeover frequency impacts overall productivity. Future 

implementations could benefit from incorporating maintenance prediction signals into 

the credit calculation, potentially creating anticipatory scheduling behaviors that further 

reduce unplanned downtime occurrences observed in the case study. 
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