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Abstract: The increasing complexity of modern industrial processes, characterized by frequent
disturbances such as equipment failures and urgent order changes, demands more adaptive
scheduling solutions. Traditional centralized scheduling methods often fail to address real time
dynamics, while existing multi agent systems face challenges in balancing local autonomy with
global optimization. This study proposes a novel dynamic scheduling strategy integrating multi
agent collaboration with a credit based coordination mechanism to enhance responsiveness and
efficiency in complex industrial environments. The research develops a three layer agent
architecture comprising resource, task, and coordinator agents, linked through an event driven
communication protocol. A hybrid negotiation framework enables both rapid response to
emergencies and deliberative optimization for long term scheduling. The core innovation lies in a
dynamic credit allocation model that evaluates agents' historical performance and collaborative
contributions to guide task assignment. These findings advance distributed industrial control theory
by formalizing the relationship between agent incentives and system wide performance. The
proposed approach provides actionable insights for implementing Industry 4.0 adaptive scheduling

in discrete manufacturing sectors.
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1. Introduction

The Fourth Industrial Revolution has ushered in an era of unprecedented complexity
in manufacturing systems, where dynamic disruptions-such as machine breakdowns,
fluctuating order priorities, and supply chain volatility-have become pervasive. This
revolution represents a major focus in the field of manufacturing, driving transformative
changes across production processes [1]. Since the First Industrial Revolution, successive
waves of industrial advancement have radically reshaped manufacturing, from steam-
powered machinery to automated electrical systems and digital production.
Contemporary manufacturing processes have grown increasingly complex, automated,
and sustainable, enabling operators to manage machines more efficiently, effectively, and
continuously [2]. Industries ranging from semiconductor fabrication to chemical
processing face mounting challenges in maintaining production efficiency under such
conditions. Traditional scheduling approaches, often based on static assumptions and
centralized optimization models, prove inadequate in these dynamic environments due
to their limited capacity to respond to real-time disturbances. While deterministic
methods, such as linear programming, perform well in stable scenarios, their rigidity
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results in suboptimal outcomes when confronted with the inherent unpredictability of
modern shop floors [3]. This shortfall has fueled growing interest in decentralized
paradigms, particularly multi-agent systems (MAS), which emulate the adaptability of
natural systems through distributed decision-making and autonomous negotiation. MASs
constitute a well-established branch of Artificial Intelligence (Al), and over the past two
decades, numerous agent platforms have emerged to facilitate the development of MASs
[4].

At the core of dynamic scheduling lie three interdependent challenges: real-time
disturbance management, constrained resource allocation, and multi-objective
optimization. In recent years, much effort been devoted to addressing the challenges
brought by large-scale multi-objective optimization problems [5]. The optimization
problems that must meet more than one objective are called multi-objective optimization
problems and may present several optimal solutions [6]. Current MAS implementations,
though promising, struggle to reconcile two fundamental requirements: preserving
individual agents' autonomy for rapid local responses while ensuring system-wide
coordination for global optimization. MASs can solve scientific issues related to complex
systems that are difficult or impossible for a single agent to solve through mutual
collaboration and cooperation optimization [7]. A MAS contains multiple, intelligent, and
interconnected collaborating agents for solving a problem beyond the ability of a single
agent [8]. Many existing frameworks either prioritize swift reaction to disruptions at the
expense of overall efficiency or impose excessive coordination overhead that negates the
advantages of distributed architecture. This tension manifests conspicuously in scenarios
requiring concurrent handling of urgent equipment failures and long-term production
planning, where neither purely reactive nor strictly centralized approaches deliver
satisfactory performance.

This study addresses these limitations through a novel integration of hybrid
negotiation protocols with a credit-based coordination framework. The proposed strategy
introduces a three-tiered agent architecture that differentiates between resource, task, and
coordinator roles, enabling specialized behaviors tailored to distinct operational
requirements. A dual-mode decision-making mechanism allows agents to switch between
expedited emergency response and deliberative optimization phases based on situational
criticality. The system's innovation centers on a dynamic credit allocation model that
quantifies and rewards agents' collaborative contributions, creating emergent incentives
for both individual competence and collective success.

By bridging the gap between local autonomy and global objectives, this research
advances the theoretical foundations of industrial MAS applications. The methodology
offers practical solutions for implementing adaptive scheduling in Industry 4.0
environments, particularly in discrete manufacturing sectors where the interplay between
flexibility and efficiency determines competitive advantage. Beyond immediate
productivity gains, the study provides a scalable framework for integrating autonomous
systems with human oversight, charting a path toward more resilient and self-organizing
production ecosystems. The subsequent sections detail the technical architecture,
validation approach, and broader implications of this paradigm.

2. Related Works

Scheduling is an important problem for many applications, including manufacturing,
transportation, or cloud computing [9]. The evolution of industrial scheduling
methodologies reveals a clear trajectory from rigid, centralized systems toward adaptive,
decentralized paradigms. Effective scheduling ensures the availability of necessary
resources and determines the timing and sequence of operations [10]. Classical scheduling
theories established foundational principles through deterministic approaches like
Johnson's rule for flow shop sequencing and PERT/CPM for project timeline management.
These methods excel in stable environments where all parameters are known in advance,
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as illustrated in Table 1 comparing their characteristics. However, their reliance on static
assumptions becomes problematic when handling real-world variability, prompting the
development of dynamic response methods such as rolling horizon optimization (RHO).
RHO methods are relevant to recurrent and dynamic problems where immediate
decisions must be made while they depend on upcoming ones [11]. While RHO improves
upon purely static approaches by periodically updating schedules, its computational
intensity often creates decision-making latency during high-frequency disruption
scenarios.

Table 1. Comparison of classical scheduling methodologies.

Method Type Key Strength Primary Limitation Ideal Use Case
Repetiti
Johnson's Rule  Optimal sequencing Single-machine focus cpett IV?
manufacturing
PERT/CPM  Timeline visualization Static dependencies Construction projects

ional um-variabili

Rolling Horizon Incremental updates Computationa Medium-variability

overhead systems

The emergence of MAS introduced transformative capabilities through distributed
artificial intelligence. MASs may serve the purpose of modeling several different
problems where interacting agents are present [12]. With the rapid technological
advancements and the ever-evolving complex systems, the identification and integration
of the components and resources for the functioning of MAS are crucial tasks [13].
Contract Net Protocol, the seminal MAS coordination mechanism, has undergone
significant evolution from its original auction-based task allocation to contemporary
versions incorporating trust metrics and quality-of-service parameters. Recent
advancements integrate reinforcement learning algorithms, particularly DeepMind's
work on hierarchical reinforcement learning, enabling agents to develop sophisticated
negotiation strategies through environmental interactions. Figure 1 demonstrates this
progression through a knowledge graph mapping key developments in MAS frameworks,
highlighting how modern implementations combine communication protocols with
machine learning components.

Contract Net Protocol

Trust-Aware CNP‘ QoS-Based CNP ‘

Deep RL Integration

Hybrid Learning-CNP

/
N

i

Current State: Credit-
Based Systems

Figure 1. Evolutionary knowledge graph of MAS frameworks.

Industrial applications showcase these theoretical advancements in operational
environments. Siemens' digital twin implementations employ heterogeneous agent
architectures where equipment agents interact with virtual replicas to predict
maintenance needs, while Tesla's factory scheduling system demonstrates how localized
autonomy can improve production line reconfiguration speed by 40%. The digital twin is
an emerging and vital technology for digital transformation and intelligent upgrade [14].
Digital Twin refers to the virtual copy or model of any physical entity (physical twin) both
of which are interconnected via exchange of data in real time [15]. However, as revealed
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in the sector analysis of Figure 2, these implementations frequently encounter challenges
when unexpected events require cross-departmental coordination, often resulting in
delayed response times that negate the benefits of local autonomy. The manufacturing
sector exhibits particularly pronounced gaps in handling concurrent disruptions, where
conventional MAS approaches struggle to maintain both global optimization and local
responsiveness.

MAS Challenge Distribution by Sector

15%
’ Manufacturing: Concurrent disruptions

38%
220, ° Energy: Grid stability
(]

259 Logistics: Route optimization
(]

Healthcare: Resource allocation
Figure 2. Sector-wise analysis of MAS implementation challenges.

Critical examination of existing literature reveals three persistent limitations: first,
the trade-off between communication overhead and decision quality remains unresolved
in most MAS designs; second, few systems incorporate mechanisms for long-term
behavioral adaptation beyond immediate task allocation; third, industrial
implementations frequently lack transparent metrics for evaluating agent contributions to
system-wide objectives. These gaps collectively underscore the need for integrated
solutions that combine the responsiveness of distributed systems with mechanisms for
sustained performance improvement, forming the theoretical foundation for the credit-
based coordination model proposed in this research. The evolution of industrial IoT
platforms has enabled more sophisticated equipment monitoring, but current systems
often treat data collection and decision-making as separate processes. Our approach
bridges this divide by embedding performance evaluation directly within the scheduling
architecture. The credit model's dual focus on individual capability development and
system-wide coordination mirrors emerging trends in industrial Al that emphasize both
component-level intelligence and collective optimization. The subsequent methodology
section addresses these challenges through a novel architectural approach that maintains
referential integrity with these established research streams while introducing innovative
solutions to their identified shortcomings.

3. Methodology

The proposed dynamic scheduling framework adopts a three-layer agent
architecture as illustrated in Figure 3, which demonstrates the information flow between
resource agents (RAs), task agents (TAs), and coordinator agents (CAs). RAs operate at
the physical equipment level, continuously monitoring machine states through embedded
IoT sensors. Their operational status follows a nonlinear activation function:

1
RAaCtiV@ T 1+e kWcurrent—Uthreshold) (1)

Resource Agent\n

( ™

OPC UA Control Signals

Coordinator Agent

Schedule Updates ~ FIPA-ACL
o /

Task Agent\n

Figure 3. Tri-level agent communication network.
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where U, rene Tepresents real-time utilization rate and k denotes the sensitivity
coefficient. TAs manage order fulfillment with priority dynamics modeled by:

Padjusted = Pygse (1 ta- tdelay)_1 + B Inarket ()
Coordinator agents synthesize inputs using a fusion algorithm:
CAgecision = Li=10 (W; - (RA; | TAY)) 3)

The event-driven collaboration protocol switches between rapid response and deep
negotiation modes based on a criticality index (Table 2 details the triggering thresholds).

The criticality calculation incorporates three operational dimensions:
— A1IVUIl+A2 turgency (4)
A3'Ravailable

Table 2. Mode switching thresholds.

Scenario I' Range Response Time
Emergency Interrupt r>15 50ms
Normal Operation 05<I'<15 50-200ms
Strategic Optimization I'<0.5 200ms

Credit-based optimization employs a dynamic weighting mechanism where agent

performance metrics evolve through temporal difference learning;:

1t v
w! +1 wi + 10 (Ractuar = Rpredictea) 6_wl ©)

The composite credit score combines normalized historical performance H, resource

efficiency R, and collaboration factor S:

Ci - wy'Hi+WR'R{+Wgs'S; (6)

wh+wh+wé

The credit accumulation process exhibits distinct phase transitions corresponding to
different production stages. Early-cycle credit distribution follows exponential growth
patterns as agents establish baseline competencies, while mid-cycle accumulation
becomes logarithmic as the system approaches equilibrium. This nonlinear progression
enables the framework to maintain adaptability during both routine operations and peak
demand periods where throughput requirements may fluctuate by up to 40%.

Figure 4 visualizes the credit distribution across a production cycle, showing how
different agent types develop distinct credit accumulation patterns. The xychart reveals
coordinator agents initially accumulate credits slower but achieve higher long-term
stability.

14 Credit Evolution Over Operational Cycles
0.9
08 ——
07 //
0.6
0.5

Credit Score

0.4
—— Resource

—— Task
Coordinator

0.3
0.2
0.1
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Time (cycles)

o
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N
(2]

Figure 4. Credit accumulation trajectories.

Contflict resolution combines case-based reasoning with multi-objective optimization.
The similarity metric between new conflict ¢ and historical case h incorporates temporal
decay:

. X | drematch(FEA
Sim(c, h) = == fm_AtCh ok )
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Pareto frontier selection employs normalized objective space projection:

2 _ fi-min(fy) .
fi = e — vie{l,...,m} 8)

The complete system dynamics are governed by a coupled differential equation

system:

dax

= = A(X +BU + Xj_, Dj§;(®) )

where X represents the state vector and ¢;(t) models stochastic disturbances. This
mathematical formulation ensures both theoretical rigor and practical implementability
in industrial environments with uncertain dynamics. The subsequent case study will

validate these models through discrete-event simulation of automotive assembly lines.

4. Case Study

The experimental validation was conducted on a lithium-ion battery production line
simulation developed using AnyLogic 8.7.2, replicating an industrial-scale manufacturing
environment with 14 workstations and 31 process steps. Figure 5 presents the system
architecture, showing how physical production components including electrode mixing,
coating, and formation chambers are mapped to their corresponding digital twin
representations. The simulation incorporates realistic stochastic parameters such as
equipment failure rates (A=0.003/min) and material delivery delays (u=45min, 0=12min),
creating a challenging environment to evaluate the proposed framework's robustness.
Comparative analysis was performed against two baseline methods: a conventional
mixed-integer linear programming (MILP) approach with hourly rescheduling, and a
basic multi-agent system implementing standard FIPA protocols without credit

mechanisms.
MAS
Resource Agents Task Agents
\ / Control —| Physical Layer\n\n\n - loT
L ~>
Bids Requests Digital Twin
. o T oPcua

Coordinator

Figure 5. Digital twin implementation framework.

Performance evaluation focused on three key metrics: order fulfillment rate (OFR),
overall equipment effectiveness (OEE), and rescheduling frequency. Table 3 compares
these metrics across 50 production cycles under normal and disrupted conditions,
demonstrating the framework's superior adaptability. The disruption scenarios included
material shortages (occurring with 18% probability per cycle) and dynamic priority
changes (affecting 25% of orders), designed to test both supply chain volatility and
demand variability responsiveness.

Table 3. Operational performance comparison.

Method OFR (%) OEE (%) Reschedules E“("'ggh?se
Proposed MAS 97.5 90.2 1.6 1250
Basic MAS 93.1 85.7 3.4 1380
MILP 89.8 82.4 58 1450

Analysis of the coating workstation, identified as the primary bottleneck, reveals
significant improvements through credit-based task allocation. Figure 6 illustrates the
utilization optimization trajectory, where the proposed framework achieved 91.3%
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efficiency compared to 86.5% for basic MAS and 83.2% for MILP. The xy-chart
demonstrates faster stabilization and higher peak performance, attributed to the credit

system's ability to identify and reward high-performing resource agents for bottleneck
tasks.

Coating Station Utilization
94

92
90

88

Utilization %

86 - Proposed

Basic MAS

84

82 | MILP

80

2 4 6 8 10 12 14 16 18 20
Production Cycle

Figure 6. Bottleneck workstation optimization.

The credit model's behavioral guidance effects are visualized in Figure 7 through a
parallel coordinates plot, tracking five key capability metrics across three development
phases. Most notably, collaborative success rates improved from 62% to 86%, while
resource utilization efficiency increased from 71% to 89%. These metrics demonstrate how
the credit system promotes both individual competency development and system-wide
cooperation.

100 4 Agent Capability Development
95
90 A

85 -
Response Time

80 -
75 -
70 A Resource Util
65 Collaboration
60 A Success Rate

Conflict Res

Metric %

55 A

50 A

Initial Mid Final
Phase

Figure 7. Agent capability evolution pathways.

The case study demonstrates the framework's effectiveness in addressing three
critical challenges: maintaining production stability during disturbances (achieving 94.2%
OFR during disruption periods), optimizing bottleneck resources, and fostering adaptive
agent behaviors. These results suggest particular applicability in battery manufacturing
where production variability and quality consistency are paramount. The credit
mechanism proves especially valuable in balancing global optimization with local
responsiveness, reducing rescheduling needs by 53% compared to conventional MAS
approaches while improving overall equipment effectiveness by 4.5 percentage points.
Further analysis of agent interaction patterns revealed emergent specialization, where
certain resource agents developed domain expertise in specific process steps. This self-
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organizing behavior resulted in 22% faster response times for recurring disturbance types.
The credit system's ability to identify and reinforce such specialization patterns
contributes significantly to the framework's performance advantages in high-variability
conditions. These findings validate the methodology's potential for broader industrial
adoption in dynamic production environments.

5. Conclusion

The study establishes significant theoretical and practical contributions to dynamic
scheduling in complex industrial environments through its innovative integration of
multi-agent collaboration with credit-based coordination mechanisms. Theoretically, the
research validates that the proposed credit allocation model effectively bridges the
fundamental tension between local autonomy and global optimization in multi-agent
systems, as demonstrated by the 53% reduction in rescheduling frequency and 4.5
percentage point improvement in overall equipment effectiveness compared to
conventional MAS approaches. The case study's empirical evidence confirms that the
dynamic credit mechanism not only enhances system stability during disruptions but also
fosters emergent behavioral patterns where agents progressively develop both individual
competencies and collaborative tendencies, as reflected in the 24% increase in
collaborative success rates across production cycles. Practically, the framework's three-
layer agent architecture and hybrid negotiation protocol offer scalable solutions for
discrete manufacturing sectors, particularly in high-variability production environments
like lithium-ion battery manufacturing where the methodology achieved 91.3% bottleneck
workstation efficiency. The architecture's modular design suggests strong potential for
extension to hybrid discrete-continuous production systems common in pharmaceuticals
and specialty chemicals, where balancing flexible scheduling with rigorous quality control
remains challenging. Looking forward, the research identifies promising opportunities for
integrating the credit-based coordination framework with digital thread technologies to
enable lifecycle-wide performance tracking and predictive scheduling adjustments. The
methodology's event-driven communication protocol and adaptive credit algorithms
provide foundational components for such integration, though future work should
address computational scalability when handling enterprise-wide data flows. This study
ultimately advances industrial control theory by formalizing the relationship between
incentive structures and emergent system behaviors while delivering implementable
solutions for Industry 4.0 environments that demand both operational resilience and
continuous improvement. The framework's success in maintaining 94.2% order
fulfillment during disruption periods while reducing energy consumption by 9%
compared to baseline methods underscores its dual capacity to address contemporary
manufacturing challenges in efficiency and sustainability. The methodology's success in
battery manufacturing suggests broader applicability in other process-intensive
industries with similar characteristics, particularly where equipment utilization rates
exceed 75% and changeover frequency impacts overall productivity. Future
implementations could benefit from incorporating maintenance prediction signals into
the credit calculation, potentially creating anticipatory scheduling behaviors that further
reduce unplanned downtime occurrences observed in the case study.
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