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Abstract: The rise of Industry 4.0 has accelerated the adoption of IoT-enabled sensing for real-time
quality assurance in smart manufacturing. However, most existing systems depend on cloud-centric
analytics or supervised learning models that require extensive labeled defect data, leading to latency,
poor adaptability, and limited applicability in dynamic production environments. To address this
gap, this study proposes an IoT sensor-driven quality monitoring framework based on multi-modal
signal acquisition, edge computing, and adaptive thresholding informed by short-term process
variability. The system was deployed and evaluated on two industrial production lines, Bosch
automotive components and CATL lithium-ion module assembly, using longitudinal tracking of
defect rate, first-pass yield, and overall equipment effectiveness. Results indicate a 26-31% reduction
in defects, a 26.9% increase in first-pass yield, and a 7% improvement in OEE, alongside a 47.8%
decrease in false alarms compared with static control methods. These findings demonstrate that
real-time adaptive monitoring can enhance quality performance without dependency on large
labeled datasets. The study provides a replicable implementation methodology and insights into
sensor contribution, offering practical guidance for scalable deployment and future advancements
in intelligent quality control.

Keywords: IoT sensing; real-time quality monitoring; edge computing; adaptive anomaly detection;
smart manufacturing

1. Introduction

The advent of Industry 4.0 has catalyzed a paradigm shift toward smart
manufacturing, wherein cyber-physical systems, data analytics, and interconnected
devices converge to enhance production agility, efficiency, and quality [1]. Central to this
transformation is the deployment of Internet of Things (IoT) sensors across production
lines, enabling continuous, high-frequency acquisition of process parameters such as
temperature, vibration, pressure, and visual features [2]. These data streams form the
foundation for real-time quality monitoring, a critical capability for minimizing defects,
reducing waste, and ensuring consistent product conformance in high-mix, high-volume
environments [3]. Despite rapid technological advances, many manufacturers still rely on
post-process inspection or delayed statistical process control (SPC), which fail to prevent
defect propagation and incur significant rework costs.

Existing research has extensively documented the potential of IoT-enabled
monitoring in laboratory or pilot-scale settings. However, a critical gap persists between
theoretical feasibility and industrial robustness [4]. First, most proposed systems operate
under static thresholds or supervised machine learning models that require extensive
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labeled datasets, conditions rarely met in dynamic shop floors where material variability,
equipment drift, and human interventions are common [5]. Second, few studies address
the integration latency between data acquisition, anomaly detection, and actionable
feedback to operators or control systems [6]. As noted in recent empirical work, cloud-
centric architectures often introduce delays exceeding two seconds, rendering them
ineffective for time-sensitive processes such as welding or precision assembly [7]. Third,
there remains limited evidence on how such systems quantitatively impact key
performance indicators (KPIs) like defect rate and Overall Equipment Effectiveness (OEE)
in real-world, large-scale deployments.

To bridge these gaps, this study proposes and validates an optimized real-time
quality monitoring system that leverages edge computing and adaptive rule-based
inference to enable sub-second response with minimal dependency on historical labels.
The core innovation lies in a hybrid architecture that fuses lightweight anomaly detection
at the edge with dynamic threshold calibration driven by short-term process stability
metrics. This approach ensures responsiveness without compromising adaptability, a
balance often missing in prior designs.

Our research objectives are threefold: (1) to evaluate the technical feasibility and
operational impact of an IoT sensor-driven quality monitoring system in active
production environments; (2) to quantify its effects on defect reduction and production
efficiency through longitudinal case studies; and (3) to formulate practical optimization
guidelines for system deployment, including sensor placement, data fusion strategies, and
human-in-the-loop alert management.

Methodologically, we employ a mixed-methods design combining systematic
literature analysis, comparative case studies, and performance benchmarking. Two
industrial cases are examined: a Bosch automotive component line in Germany (2023-2024)
and a CATL lithium-ion battery module assembly line in China (2024). Both implemented
multi-modal IoT sensor networks (acoustic, thermal, and vision-based) integrated with
edge gateways and MES interfaces. Quantitative metrics, including first-pass yield, false
alarm rate, and OEE, are collected over six months and compared against pre-deployment
baselines.

This study contributes both academically and practically. Theoretically, it extends the
Quality 4.0 framework by operationalizing real-time closed-loop quality control
grounded in control theory and industrial informatics. Practically, it delivers a replicable,
low-latency system blueprint that manufacturers can adopt to reduce scrap, improve
throughput, and accelerate their smart factory transformation, without requiring full-
scale Al infrastructure overhaul.

2. Literature Review

The integration of IoT sensors into manufacturing quality control has been widely
explored in recent years, with research converging on several key advantages. First, IoT-
enabled systems facilitate continuous, non-intrusive data collection from multiple
physical domains, such as thermal, acoustic, visual, and vibration signals, enabling
comprehensive, multi-dimensional process visibility previously unattainable through
manual sampling or offline inspection [8]. Second, real-time data streams support early
anomaly detection, allowing interventions before defects cascade through downstream
operations, thereby reducing scrap and rework costs [9]. Third, the high granularity and
frequency of sensor data enhance the precision of statistical and machine learning models,
improving the reliability of quality predictions compared to traditional statistical process
control (SPC) methods that rely on sparse, periodic measurements [10].

Despite these benefits, significant limitations persist in current approaches. Many
systems rely heavily on cloud-based analytics, introducing communication latency that
undermines real-time responsiveness, particularly in high-speed production lines where
decisions must be made within milliseconds. Others employ supervised machine learning
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models that demand large volumes of labeled defect data, which are costly to acquire,
prone to bias, and often unavailable in low-defect-rate scenarios or during new product
ramp-ups [11]. Furthermore, most existing architectures treat quality monitoring as a
standalone analytical function, with weak coupling to manufacturing execution systems
(MES), programmable logic controllers (PLCs), or frontline operator workflows, resulting
in alerts that are either ignored, delayed, or disconnected from corrective actions.

A comparative analysis reveals two dominant design paradigms. The first
emphasizes centralized intelligence: raw sensor data are transmitted to a cloud or on-
premise server for deep learning-based analysis [12]. While accurate under controlled
conditions, this approach suffers from bandwidth constraints, security vulnerabilities,
and feedback delays exceeding operational tolerances. The second paradigm adopts edge-
centric processing, performing feature extraction and rule-based classification locally [13].
Though faster and more resilient to network instability, such systems often lack
adaptability, they use static thresholds that fail to accommodate natural process drifts due
to tool wear, material batch changes, or environmental fluctuations.

This dichotomy highlights a critical research gap: the absence of a balanced
framework that combines the responsiveness of edge computing with the contextual
adaptability of data-driven learning, without requiring extensive historical defect labels
or compromising interpretability [14]. Moreover, empirical validation remains scarce in
actual industrial settings, especially in high-mix, high-variability production
environments where product configurations change frequently. Most studies are confined
to simulated data, single-product pilot lines, or academic testbeds, limiting their
generalizability and operational relevance [15].

Addressing these shortcomings, this study contributes a novel hybrid architecture
that integrates lightweight unsupervised anomaly detection at the edge with a dynamic
thresholding mechanism calibrated by short-term process stability indicators (e.g.,
moving-window standard deviation of torque, temperature variance, or acoustic energy).
Unlike purely model-driven or rigid rule-based systems, our approach self-adjusts to
normal operational variations while maintaining sensitivity to genuine defects. Crucially,
itis designed for seamless integration with existing MES, PLCs, and human decision loops,
ensuring that alerts are both timely and actionable. By grounding the system in real
deployments across automotive components and lithium-ion battery manufacturing, this
work bridges the gap between theoretical innovation and industrial applicability, offering
a practical, scalable pathway toward truly responsive and adaptive quality control in
smart factories.

3. Theoretical Framework and Methodology

This chapter establishes the theoretical foundation and methodological workflow for
the development, implementation, and optimization of an IoT-sensor-driven real-time
quality monitoring system in smart manufacturing environments. The framework
integrates cyber-physical production systems, statistical quality control theory, adaptive
anomaly detection, and edge-cloud collaborative computation. It further outlines the
experimental methodology employed in two real factories, detailing sensor placement,
data acquisition protocols, performance evaluation metrics, and optimization strategies.

3.1. Theoretical Framework

Modern manufacturing lines can be modeled as state-driven dynamic systems in
which product quality is a function of temporal process variables. Let

x(t) ={T(®),V(6), P(t), A(t), I(t)} Q)

represent a multivariate real-time feature vector consisting of temperature T,
vibration V, pressure P, acoustic emission A and image-derived defect indicators I. The
instantaneous quality state of a product is defined as:

Q) = f(x(t),0) 2)

Vol. 3 (2026)

209



Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

where f(-) is the monitoring model and 8 denotes its parameter vector. In
conventional supervision-based quality systems, 6 requires historical defect labels for
learning. However, in high-yield factories defect data are sparse, making supervised
optimization unreliable. Therefore, we adopt an unsupervised stability-driven adaptive
inference function, where quality deviations are detected based on the statistical
boundary of recent process fluctuations.

To capture local stability patterns, a moving-window process variability index is
defined as:

O(®) = [EEEema 3D = Rl Fy = £ Eie 3 (D) ©)

where w is the sliding window length, o,,(t) measures short-term variability, and
%, denotes local steady-state expectation. A dynamic adaptive threshold is then
generated:

() = a0y, () + 8 (4)

with @ representing sensitivity to process changes, and B defining baseline
tolerance. A sample at time t is flagged anomalous if [|x(t) — %,,|| > (t), enabling self-
adjusting anomaly detection without labeled defects. This theoretical construct bridges
the latency-tolerance trade-off between cloud-deep-learning and static edge rules.

The overall flow of data acquisition, edge inference, adaptive thresholding, and
closed-loop feedback is illustrated in Figure 1.

Feedback

Edge gatewayw ( Adaptive ‘l
prepro ing and thresholding integration with
t module J [ PLC/MES

Figure 1. Hybrid Real-Time Quality Monitoring Framework.

Multi-modal IOTW
sensors ’

KPI impact
measurement

anomaly detection

3.2. System Architecture and Module Design.

Table 1. each layer performs a distinct operational role while maintaining real-time
data flow.

Table 1. Architecture Layers, Functional Roles and Real-Time Constraints.

t Real-Ti
System Key Components Primary Function Output Flow ea‘ rme
Layer Requirement

Temperature probes, Continuous high-
Sensor vibration sensors, frequency data ~ Raw signals — <10 ms per

Layer acoustic microphones, acquisition (50-200 Edge processor channel

industrial cameras Hz)
P i Alerts &
ARM edge gateway, reprocessmg.+ ers 0.2-0.7 s
Edge . Lo anomaly detection  compressed .
lightweight inference . . inference
Layer engine using dynamic features — latenc
8 thresholds Cloud Y
Historical DB, KPI Long-term drift Updated Non-
Cloud . .
Layer analyzer, threshold learning + parameter thresholds — instantaneous

Execution MES, PLC, dashboard, intervention (speed Action logs —

Layer

optimizer

actuators

calibration Edge
Closed-loop

(12-48 h sync)

Immediate
adjust, reroute, Cloud trigger (<1 s)

heating control)
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The Sensor Layer deploys temperature, vibration, acoustic and vision sensors across
critical workstations. These devices collect continuous signals (50-200 Hz) and transmit
raw features x(t) to the edge gateway. Redundant placement is applied at welding,
pressing and thermal-sensitive stations to ensure fault tolerance.

The Edge Layer acts as the real-time inference engine. Incoming data are filtered,
normalized, and processed using the adaptive anomaly model defined in Section 3.1.
Decision latency remains within 0.2-0.7 seconds, and only anomaly scores or compressed
features are forwarded to the cloud, reducing bandwidth consumption by approximately
60-85%.

The Cloud Layer is responsible for long-term trend analysis and weekly threshold
calibration. Historical logs support drift detection, cross-sensor correlation analysis, and
KPI-linked optimization. Updated parameters are periodically synchronized back to the
edge.

Finally, the Execution Layer integrates with MES/PLC systems. When an anomaly is
confirmed, the system triggers corrective actions such as speed reduction, temperature
correction, or part diversion. Operator confirmation records loop back to the cloud,
forming a self-improving quality control cycle.

3.3. Methodology

The methodology adopted in this study follows a sequential engineering-
experimental workflow, ensuring that the proposed IoT-based quality monitoring system
is validated under real production conditions. The process consists of four stages: sensor
deployment, data acquisition and preprocessing, anomaly detection, and performance
evaluation.

(1) Sensor Deployment and Configuration:

Based on Table 1, multi-modal sensors were positioned across bottleneck and high-
variance workstations. Thermal probes were mounted near heating zones, vibration
sensors on rotating units, acoustic sensors near cutting heads, and cameras along visual
inspection paths. Redundant placement was applied to ensure continuity when a single
node fails. Sampling frequencies were standardized at 50-200 Hz, and camera inputs
maintained 15-25 fps to balance clarity and bandwidth.

(2) Data Acquisition and Preprocessing:

All collected streams were synchronized via local timestamps and transmitted to the
edge processor using MQTT and OPC-UA protocols. Noise reduction included median
filtering for vibration channels and STFT-based denoising for acoustic signals. Vision
frames were resized to 640x480 and encoded with H.265 to reduce transmission load
without compromising defect visibility. Normalization (z-score) ensured consistent
feature scaling across heterogeneous sensors.

(3) Adaptive Anomaly Detection:

Edge devices executed the dynamic threshold model introduced in Section 3.1. For
every processing cycle, a sliding window calculated mean deviation and generated a self-
adjusting threshold. When the deviation exceeded 7(t), an anomaly flag was triggered,
and the decision was returned to PLC/MES within 0.2-0.7 s. Only anomaly scores and
compressed features were uploaded to the cloud to reduce bandwidth by 60-85%.

(4) Performance Evaluation and Feedback Optimization:

System effectiveness was assessed through longitudinal tracking of defect rate, false
alarm rate, and OEE improvement over six months. Weekly cloud-side drift analysis
updated edge thresholds automatically, forming a self-improving control loop. Operator
feedback logs further supported root-cause tracing, intervention refinement, and policy
recalibration.
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4. Findings and Discussion

This section reports experimental observations from two industrial deployments,
Bosch automotive line (2023-2024) and CATL lithium-ion module production (2024), and
analyzes how the proposed loT-edge quality monitoring framework influences defect
reduction, response latency, stability under drift conditions, and operator adoption.

4.1. Overall System Performance

Deployment results confirm that the system achieves real-time anomaly intervention,
successfully preventing defect propagation in downstream assembly steps. Across six
months, the Bosch line demonstrated a 31.4% reduction in defect rate, while CATL
achieved 26.9% improvement in first-pass yield (FPY) following integration. Compared
to pre-deployment conditions, average OEE increased from 83.2% — 90.5%, indicating
meaningful enhancements in machine availability and throughput. Figure 2 presents KPI
improvements measured monthly.

90

Defect Rate (%)

- 82

T T T T T T 80
Month 1 Month 2 Month 3 Month 4 Month 5 Month 6

—®— Bosch Defect Rate —&— Bosch OEE
~M - CATL Defect Rate -9~ CATLOEE

Figure 2. Defect Rate & OEE Improvement After Deployment (Bosch vs CATL).

The downward defect trend aligns with theoretical expectations in Sec.3.1. Adaptive
thresholds enabled the system to track gradual tool wear without triggering unnecessary
stoppage. This adaptability reduced false alarms by 47.8% compared with static-threshold
baselines, preventing alert fatigue among operators.

The biggest impact occurred in thermal-regulated welding and cell-stacking stages.
Previously, temperature overshoot events were detected only during end-of-shift
sampling, often after hundreds of units were processed. The proposed architecture
shortened detection-to-action time to <0.6 seconds, enabling real-time temperature
rollback.

4.2. Comparison with Baseline Methods

To contextualize effectiveness, three baselines were selected for contrast: (1) cloud-
only Al classification, (2) static SPC thresholding, and (3) offline visual defect inspection.
This comparison allows us to evaluate whether improvements stem from architectural
design rather than hardware density or computational scale. Performance outcomes are
summarized in Table 2, highlighting differences in latency, false alarm response, and
quality yield.
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Table 2. Comparison of Proposed Method vs. Baselines.

FPY
Method Avg. Latency False Alarm Rate Notes
Improvement
Cloud-only deep 1926 5 9.8% 7,49 Accurate but
model delayed
Static SPC - 15.3% 130y, Oensitivetodrfy
unstable
Offline visual o No real-time
- - 0% e
check capability
Proposed IoT- 8.0% — 4.2% Best latency +
2-0.7 +26-31%
Edge Hybrid 02:07s (—47.8%) ! adaptability

The evaluation indicates that the superiority of the proposed framework derives not
from heavier computation, but from placing inference at the decision-critical layer. Cloud-
Al models, although accurate in static environments, exhibit 1.9-2.6 s latency, too slow for
thermal welding or high-speed stacking. SPC, while computationally light, relies on rigid
control charts that struggle with process drift, resulting in 15.3% false alarms, the highest
among all methods. Offline inspection performs no real-time prevention, detecting defects
only post-production.

In contrast, the hybrid IoT-edge system strikes a balance between responsiveness and
robustness, enabling immediate anomaly localization (<0.7 s) while dynamically adjusting
detection sensitivity. This architectural alignment with operational tempo, not algorithmic
complexity, proves to be the primary driver of observed improvements.

4.3. Sensor Contribution and Modality Ablation

To determine which sensing modalities exert the greatest influence on anomaly
detection, an ablation study was conducted on weld-line production segments by
selectively disabling specific sensor inputs. This approach isolates the marginal
contribution of each modality and reveals sensitivity to temperature variation, vibration
resonance, tool wear and visual surface change. Experiment results are summarized in
Figure 3, where the full sensor fusion configuration is taken as the 100% baseline.

105

100.0%

100

94.4%

95:9

90 1

85
81.8%

Relative Accuracy (%)

80 1

75

70 -

Full Fusion Audio Removed Vibration Removed Thermal Removed Vision Removed

Figure 3. Modality Ablation Impact on Detection Accuracy.

Findings indicate that thermal and acoustic sensing jointly deliver the strongest
detection capability, particularly in heat-affected fusion zones. Removing thermal data
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alone reduced detection accuracy by 18.2%, confirming that real-time temperature
tracking is essential to identifying sub-surface weld defects before they manifest visually.
Meanwhile, acoustic features proved unexpectedly influential, enabling early detection of
cutter instability and resonance drift several production cycles before surface degradation
became visible.

Vision-based inspection contributed mainly to final-stage confirmation, capturing
appearance-level inconsistencies but rarely preceding thermal trends. Vibration data
provided intermediate value, primarily signaling emerging mechanical faults rather than
product-quality anomalies directly. These layered effects support the architectural
decision outlined in Section 3.2: multi-modal sensing is complementary rather than
redundant, with each signal channel augmenting the temporal detectability window. The
combined sensor set not only improves recognition accuracy but also brings failures to
light earlier, producing cleaner, more interpretable alert patterns.

4.4. Operational Challenges and Practical Insights

Despite the system's significant performance gains, several operational issues
emerged during deployment. First, sensor misalignment occurred after scheduled
equipment maintenance, particularly affecting acoustic and thermal nodes. This resulted
in measurement drift and occasional false alerts, suggesting the need for automated re-
registration mechanisms to recalibrate sensors without halting production. Second,
operators frequently dismissed low-severity alerts, perceiving them as background noise.
While the system accurately detected early-stage anomalies, uniform alert severity led to
reduced attention and delayed intervention. This indicates that graded alert scoring and
adaptive visualization could improve human response.

A third challenge involved sudden changes in raw material batches. In these events,
the adaptive detection model required 2-6 hours to reach a new equilibrium state due to
shifts in heat dissipation, surface reflectivity, or stiffness. Although the system eventually
stabilized, integrating online few-shot learning may shorten adaptation windows and
minimize quality variation during transitions.

From these challenges, two insights are clear. Human-in-the-loop design remains
indispensable, even highly sensitive systems underperform if operational staff disregard
signals. Moreover, while weekly cloud-drift recalibration is effective, further advances
such as meta-learning and rapid threshold self-adjustment could accelerate adaptation
and reduce downtime.

4.5. Theoretical and Industrial Implications

The findings of this study demonstrate that effective quality monitoring does not
require extensive labeled datasets. By leveraging short-term statistical fluctuations rather
than historical defect annotations, the system adapts to process drift and variable
operating conditions, challenging the traditional reliance on fully supervised learning for
industrial quality control. This theoretical shift indicates that interpretability and
adaptability can coexist with real-time responsiveness, offering a more scalable path
toward autonomous manufacturing analytics.

On the industrial side, the implications are immediate and practical. Real-time
detection enables intervention before defects propagate downstream, reducing scrap
generation rather than merely identifying faults after they occur. The hybrid edge-
computing structure lowers server load and operational cost, making deployment viable
for small and medium-sized manufacturers, not only large factories. Additionally, the
ablation findings provide data-driven guidance for sensor configuration, helping factories
balance performance and budget. Ultimately, the system strengthens manufacturing
resilience by improving visibility and response speed while reducing cognitive burden on
operators, positioning human oversight as augmented rather than replaced.
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5. Conclusion

This study developed and validated a real-time quality monitoring architecture for
smart manufacturing, built upon multi-modal IoT sensing, edge inference, and adaptive
statistical thresholding. Unlike conventional cloud-driven or static SPC-based solutions,
the proposed system achieves sub-second fault identification without requiring large-
scale historical defect labels. Through industrial deployment on Bosch automotive and
CATL battery module production lines, the system demonstrated measurable and
sustained gains, defect rate reductions of up to 31.4%, first-pass yield improvement
exceeding 26%, and OEE increases beyond 7%. These results confirm not only the
feasibility but also the economic value of integrating edge analytics with dynamic quality
inference in high-velocity, high-variability manufacturing environments.

Academically, this work reframes quality monitoring as a real-time stochastic
adaptation problem rather than a label-dependent classification task. The introduced
moving-window variability index and self-adjusting threshold model offer a lightweight
path toward adaptive quality assurance, particularly in settings where defect data are
scarce or process conditions evolve continuously. The ablation study further clarifies the
contribution hierarchy of sensing modalities, thermal and acoustic signals exhibiting the
strongest defect predictiveness, which provides a theoretical reference for sensor
allocation and cost-efficient instrumentation.

Practically, the implementation roadmap presented in the methodology section
offers a replicable blueprint for factories transitioning toward Industry 4.0. The system's
low bandwidth demand, rapid inferencing performance, and compatibility with existing
MES/PLC infrastructure make it suitable not only for large-scale production but also for
SME:s seeking scalable digitization.

Future work will focus on three concrete directions: (1) integrating few-shot or meta-
learning mechanisms to accelerate model stabilization during material or tool transitions;
(2) developing risk-tiered alerting interfaces to improve operator response and minimize
alarm fatigue; and (3) extending the monitoring loop to include predictive maintenance,
enabling gradual fault anticipation rather than pure anomaly response. Taken together,
these pathways point toward an increasingly autonomous, interpretable, and
economically deployable framework for intelligent quality assurance in modern

manufacturing.
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