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Abstract: The rise of Industry 4.0 has accelerated the adoption of IoT-enabled sensing for real-time 

quality assurance in smart manufacturing. However, most existing systems depend on cloud-centric 

analytics or supervised learning models that require extensive labeled defect data, leading to latency, 

poor adaptability, and limited applicability in dynamic production environments. To address this 

gap, this study proposes an IoT sensor-driven quality monitoring framework based on multi-modal 

signal acquisition, edge computing, and adaptive thresholding informed by short-term process 

variability. The system was deployed and evaluated on two industrial production lines, Bosch 

automotive components and CATL lithium-ion module assembly, using longitudinal tracking of 

defect rate, first-pass yield, and overall equipment effectiveness. Results indicate a 26-31% reduction 

in defects, a 26.9% increase in first-pass yield, and a 7% improvement in OEE, alongside a 47.8% 

decrease in false alarms compared with static control methods. These findings demonstrate that 

real-time adaptive monitoring can enhance quality performance without dependency on large 

labeled datasets. The study provides a replicable implementation methodology and insights into 

sensor contribution, offering practical guidance for scalable deployment and future advancements 

in intelligent quality control. 
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1. Introduction 

The advent of Industry 4.0 has catalyzed a paradigm shift toward smart 

manufacturing, wherein cyber-physical systems, data analytics, and interconnected 

devices converge to enhance production agility, efficiency, and quality [1]. Central to this 

transformation is the deployment of Internet of Things (IoT) sensors across production 

lines, enabling continuous, high-frequency acquisition of process parameters such as 

temperature, vibration, pressure, and visual features [2]. These data streams form the 

foundation for real-time quality monitoring, a critical capability for minimizing defects, 

reducing waste, and ensuring consistent product conformance in high-mix, high-volume 

environments [3]. Despite rapid technological advances, many manufacturers still rely on 

post-process inspection or delayed statistical process control (SPC), which fail to prevent 

defect propagation and incur significant rework costs. 

Existing research has extensively documented the potential of IoT-enabled 

monitoring in laboratory or pilot-scale settings. However, a critical gap persists between 

theoretical feasibility and industrial robustness [4]. First, most proposed systems operate 

under static thresholds or supervised machine learning models that require extensive 
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labeled datasets, conditions rarely met in dynamic shop floors where material variability, 

equipment drift, and human interventions are common [5]. Second, few studies address 

the integration latency between data acquisition, anomaly detection, and actionable 

feedback to operators or control systems [6]. As noted in recent empirical work, cloud-

centric architectures often introduce delays exceeding two seconds, rendering them 

ineffective for time-sensitive processes such as welding or precision assembly [7]. Third, 

there remains limited evidence on how such systems quantitatively impact key 

performance indicators (KPIs) like defect rate and Overall Equipment Effectiveness (OEE) 

in real-world, large-scale deployments. 

To bridge these gaps, this study proposes and validates an optimized real-time 

quality monitoring system that leverages edge computing and adaptive rule-based 

inference to enable sub-second response with minimal dependency on historical labels. 

The core innovation lies in a hybrid architecture that fuses lightweight anomaly detection 

at the edge with dynamic threshold calibration driven by short-term process stability 

metrics. This approach ensures responsiveness without compromising adaptability, a 

balance often missing in prior designs. 

Our research objectives are threefold: (1) to evaluate the technical feasibility and 

operational impact of an IoT sensor-driven quality monitoring system in active 

production environments; (2) to quantify its effects on defect reduction and production 

efficiency through longitudinal case studies; and (3) to formulate practical optimization 

guidelines for system deployment, including sensor placement, data fusion strategies, and 

human-in-the-loop alert management. 

Methodologically, we employ a mixed-methods design combining systematic 

literature analysis, comparative case studies, and performance benchmarking. Two 

industrial cases are examined: a Bosch automotive component line in Germany (2023-2024) 

and a CATL lithium-ion battery module assembly line in China (2024). Both implemented 

multi-modal IoT sensor networks (acoustic, thermal, and vision-based) integrated with 

edge gateways and MES interfaces. Quantitative metrics, including first-pass yield, false 

alarm rate, and OEE, are collected over six months and compared against pre-deployment 

baselines. 

This study contributes both academically and practically. Theoretically, it extends the 

Quality 4.0 framework by operationalizing real-time closed-loop quality control 

grounded in control theory and industrial informatics. Practically, it delivers a replicable, 

low-latency system blueprint that manufacturers can adopt to reduce scrap, improve 

throughput, and accelerate their smart factory transformation, without requiring full-

scale AI infrastructure overhaul. 

2. Literature Review 

The integration of IoT sensors into manufacturing quality control has been widely 

explored in recent years, with research converging on several key advantages. First, IoT-

enabled systems facilitate continuous, non-intrusive data collection from multiple 

physical domains, such as thermal, acoustic, visual, and vibration signals, enabling 

comprehensive, multi-dimensional process visibility previously unattainable through 

manual sampling or offline inspection [8]. Second, real-time data streams support early 

anomaly detection, allowing interventions before defects cascade through downstream 

operations, thereby reducing scrap and rework costs [9]. Third, the high granularity and 

frequency of sensor data enhance the precision of statistical and machine learning models, 

improving the reliability of quality predictions compared to traditional statistical process 

control (SPC) methods that rely on sparse, periodic measurements [10]. 

Despite these benefits, significant limitations persist in current approaches. Many 

systems rely heavily on cloud-based analytics, introducing communication latency that 

undermines real-time responsiveness, particularly in high-speed production lines where 

decisions must be made within milliseconds. Others employ supervised machine learning 
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models that demand large volumes of labeled defect data, which are costly to acquire, 

prone to bias, and often unavailable in low-defect-rate scenarios or during new product 

ramp-ups [11]. Furthermore, most existing architectures treat quality monitoring as a 

standalone analytical function, with weak coupling to manufacturing execution systems 

(MES), programmable logic controllers (PLCs), or frontline operator workflows, resulting 

in alerts that are either ignored, delayed, or disconnected from corrective actions. 

A comparative analysis reveals two dominant design paradigms. The first 

emphasizes centralized intelligence: raw sensor data are transmitted to a cloud or on-

premise server for deep learning-based analysis [12]. While accurate under controlled 

conditions, this approach suffers from bandwidth constraints, security vulnerabilities, 

and feedback delays exceeding operational tolerances. The second paradigm adopts edge-

centric processing, performing feature extraction and rule-based classification locally [13]. 

Though faster and more resilient to network instability, such systems often lack 

adaptability, they use static thresholds that fail to accommodate natural process drifts due 

to tool wear, material batch changes, or environmental fluctuations. 

This dichotomy highlights a critical research gap: the absence of a balanced 

framework that combines the responsiveness of edge computing with the contextual 

adaptability of data-driven learning, without requiring extensive historical defect labels 

or compromising interpretability [14]. Moreover, empirical validation remains scarce in 

actual industrial settings, especially in high-mix, high-variability production 

environments where product configurations change frequently. Most studies are confined 

to simulated data, single-product pilot lines, or academic testbeds, limiting their 

generalizability and operational relevance [15]. 

Addressing these shortcomings, this study contributes a novel hybrid architecture 

that integrates lightweight unsupervised anomaly detection at the edge with a dynamic 

thresholding mechanism calibrated by short-term process stability indicators (e.g., 

moving-window standard deviation of torque, temperature variance, or acoustic energy). 

Unlike purely model-driven or rigid rule-based systems, our approach self-adjusts to 

normal operational variations while maintaining sensitivity to genuine defects. Crucially, 

it is designed for seamless integration with existing MES, PLCs, and human decision loops, 

ensuring that alerts are both timely and actionable. By grounding the system in real 

deployments across automotive components and lithium-ion battery manufacturing, this 

work bridges the gap between theoretical innovation and industrial applicability, offering 

a practical, scalable pathway toward truly responsive and adaptive quality control in 

smart factories. 

3. Theoretical Framework and Methodology 

This chapter establishes the theoretical foundation and methodological workflow for 

the development, implementation, and optimization of an IoT-sensor-driven real-time 

quality monitoring system in smart manufacturing environments. The framework 

integrates cyber-physical production systems, statistical quality control theory, adaptive 

anomaly detection, and edge-cloud collaborative computation. It further outlines the 

experimental methodology employed in two real factories, detailing sensor placement, 

data acquisition protocols, performance evaluation metrics, and optimization strategies. 

3.1. Theoretical Framework 

Modern manufacturing lines can be modeled as state-driven dynamic systems in 

which product quality is a function of temporal process variables. Let 

𝑥(𝑡) = {𝑇(𝑡), 𝑉(𝑡), 𝑃(𝑡), 𝐴(𝑡), 𝐼(𝑡)}         (1) 

represent a multivariate real-time feature vector consisting of temperature 𝑇 , 

vibration 𝑉, pressure 𝑃, acoustic emission 𝐴 and image-derived defect indicators 𝐼. The 

instantaneous quality state of a product is defined as: 

𝑄(𝑡) = 𝑓(𝑥(𝑡), 𝜃)            (2) 
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where 𝑓(⋅)  is the monitoring model and 𝜃  denotes its parameter vector. In 

conventional supervision-based quality systems, 𝜃 requires historical defect labels for 

learning. However, in high-yield factories defect data are sparse, making supervised 

optimization unreliable. Therefore, we adopt an unsupervised stability-driven adaptive 

inference function, where quality deviations are detected based on the statistical 

boundary of recent process fluctuations. 

To capture local stability patterns, a moving-window process variability index is 

defined as: 

𝜎𝑤(𝑡) = √
1

𝑤
∑ ‖𝑡
𝑖=𝑡−𝑤 𝑥(𝑖) − 𝑥̄𝑤‖

2, 𝑥̄𝑤 =
1

𝑤
∑ 𝑥𝑡
𝑖=𝑡−𝑤 (𝑖)      (3) 

where 𝑤 is the sliding window length, 𝜎𝑤(𝑡) measures short-term variability, and 

𝑥̄𝑤  denotes local steady-state expectation. A dynamic adaptive threshold is then 

generated: 

𝜏(𝑡) = 𝛼𝜎𝑤(𝑡) + 𝛽           (4) 

with 𝛼  representing sensitivity to process changes, and 𝛽  defining baseline 

tolerance. A sample at time 𝑡 is flagged anomalous if ‖𝑥(𝑡) − 𝑥̄𝑤‖ > 𝜏(𝑡), enabling self-

adjusting anomaly detection without labeled defects. This theoretical construct bridges 

the latency-tolerance trade-off between cloud-deep-learning and static edge rules. 

The overall flow of data acquisition, edge inference, adaptive thresholding, and 

closed-loop feedback is illustrated in Figure 1. 

 

Figure 1. Hybrid Real-Time Quality Monitoring Framework. 

3.2. System Architecture and Module Design. 

Table 1. each layer performs a distinct operational role while maintaining real-time 

data flow. 

Table 1. Architecture Layers, Functional Roles and Real-Time Constraints. 

System 

Layer 
Key Components Primary Function Output Flow 

Real-Time 

Requirement 

Sensor 

Layer 

Temperature probes, 

vibration sensors, 

acoustic microphones, 

industrial cameras 

Continuous high-

frequency data 

acquisition (50-200 

Hz) 

Raw signals → 

Edge processor 

≤10 ms per 

channel 

Edge 

Layer 

ARM edge gateway, 

lightweight inference 

engine 

Preprocessing + 

anomaly detection 

using dynamic 

thresholds 

Alerts & 

compressed 

features → 

Cloud 

0.2-0.7 s 

inference 

latency 

Cloud 

Layer 

Historical DB, KPI 

analyzer, threshold 

optimizer 

Long-term drift 

learning + parameter 

calibration 

Updated 

thresholds → 

Edge 

Non-

instantaneous 

(12-48 h sync) 

Execution 

Layer 

MES, PLC, dashboard, 

actuators 

Closed-loop 

intervention (speed 

adjust, reroute, 

heating control) 

Action logs → 

Cloud 

Immediate 

trigger (<1 s) 



Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS 

 

Vol. 3 (2026) 211  

The Sensor Layer deploys temperature, vibration, acoustic and vision sensors across 

critical workstations. These devices collect continuous signals (50-200 Hz) and transmit 

raw features 𝑥(𝑡)  to the edge gateway. Redundant placement is applied at welding, 

pressing and thermal-sensitive stations to ensure fault tolerance. 

The Edge Layer acts as the real-time inference engine. Incoming data are filtered, 

normalized, and processed using the adaptive anomaly model defined in Section 3.1. 

Decision latency remains within 0.2-0.7 seconds, and only anomaly scores or compressed 

features are forwarded to the cloud, reducing bandwidth consumption by approximately 

60-85%. 

The Cloud Layer is responsible for long-term trend analysis and weekly threshold 

calibration. Historical logs support drift detection, cross-sensor correlation analysis, and 

KPI-linked optimization. Updated parameters are periodically synchronized back to the 

edge. 

Finally, the Execution Layer integrates with MES/PLC systems. When an anomaly is 

confirmed, the system triggers corrective actions such as speed reduction, temperature 

correction, or part diversion. Operator confirmation records loop back to the cloud, 

forming a self-improving quality control cycle. 

3.3. Methodology 

The methodology adopted in this study follows a sequential engineering-

experimental workflow, ensuring that the proposed IoT-based quality monitoring system 

is validated under real production conditions. The process consists of four stages: sensor 

deployment, data acquisition and preprocessing, anomaly detection, and performance 

evaluation. 

(1) Sensor Deployment and Configuration: 

 Based on Table 1, multi-modal sensors were positioned across bottleneck and high-

variance workstations. Thermal probes were mounted near heating zones, vibration 

sensors on rotating units, acoustic sensors near cutting heads, and cameras along visual 

inspection paths. Redundant placement was applied to ensure continuity when a single 

node fails. Sampling frequencies were standardized at 50-200 Hz, and camera inputs 

maintained 15-25 fps to balance clarity and bandwidth. 

(2) Data Acquisition and Preprocessing: 

 All collected streams were synchronized via local timestamps and transmitted to the 

edge processor using MQTT and OPC-UA protocols. Noise reduction included median 

filtering for vibration channels and STFT-based denoising for acoustic signals. Vision 

frames were resized to 640×480 and encoded with H.265 to reduce transmission load 

without compromising defect visibility. Normalization (z-score) ensured consistent 

feature scaling across heterogeneous sensors. 

(3) Adaptive Anomaly Detection: 

Edge devices executed the dynamic threshold model introduced in Section 3.1. For 

every processing cycle, a sliding window calculated mean deviation and generated a self-

adjusting threshold. When the deviation exceeded 𝜏(𝑡), an anomaly flag was triggered, 

and the decision was returned to PLC/MES within 0.2-0.7 s. Only anomaly scores and 

compressed features were uploaded to the cloud to reduce bandwidth by 60-85%. 

(4) Performance Evaluation and Feedback Optimization: 

 System effectiveness was assessed through longitudinal tracking of defect rate, false 

alarm rate, and OEE improvement over six months. Weekly cloud-side drift analysis 

updated edge thresholds automatically, forming a self-improving control loop. Operator 

feedback logs further supported root-cause tracing, intervention refinement, and policy 

recalibration. 
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4. Findings and Discussion 

This section reports experimental observations from two industrial deployments, 

Bosch automotive line (2023-2024) and CATL lithium-ion module production (2024), and 

analyzes how the proposed IoT-edge quality monitoring framework influences defect 

reduction, response latency, stability under drift conditions, and operator adoption.  

4.1. Overall System Performance 

Deployment results confirm that the system achieves real-time anomaly intervention, 

successfully preventing defect propagation in downstream assembly steps. Across six 

months, the Bosch line demonstrated a 31.4% reduction in defect rate, while CATL 

achieved 26.9% improvement in first-pass yield (FPY) following integration. Compared 

to pre-deployment conditions, average OEE increased from 83.2% → 90.5%, indicating 

meaningful enhancements in machine availability and throughput. Figure 2 presents KPI 

improvements measured monthly. 

 

Figure 2. Defect Rate & OEE Improvement After Deployment (Bosch vs CATL). 

The downward defect trend aligns with theoretical expectations in Sec.3.1. Adaptive 

thresholds enabled the system to track gradual tool wear without triggering unnecessary 

stoppage. This adaptability reduced false alarms by 47.8% compared with static-threshold 

baselines, preventing alert fatigue among operators. 

The biggest impact occurred in thermal-regulated welding and cell-stacking stages. 

Previously, temperature overshoot events were detected only during end-of-shift 

sampling, often after hundreds of units were processed. The proposed architecture 

shortened detection-to-action time to <0.6 seconds, enabling real-time temperature 

rollback. 

4.2. Comparison with Baseline Methods 

To contextualize effectiveness, three baselines were selected for contrast: (1) cloud-

only AI classification, (2) static SPC thresholding, and (3) offline visual defect inspection. 

This comparison allows us to evaluate whether improvements stem from architectural 

design rather than hardware density or computational scale. Performance outcomes are 

summarized in Table 2, highlighting differences in latency, false alarm response, and 

quality yield. 
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Table 2. Comparison of Proposed Method vs. Baselines. 

Method Avg. Latency False Alarm Rate 
FPY 

Improvement 
Notes 

Cloud-only deep 

model 
1.9-2.6 s 9.8% +7.4% 

Accurate but 

delayed 

Static SPC - 15.3% +3.2% 
Sensitive to drift; 

unstable 

Offline visual 

check 
- - 0% 

No real-time 

capability 

Proposed IoT-

Edge Hybrid 
0.2-0.7 s 

8.0% → 4.2% 

(−47.8%) 
+26-31% 

Best latency + 

adaptability 

The evaluation indicates that the superiority of the proposed framework derives not 

from heavier computation, but from placing inference at the decision-critical layer. Cloud-

AI models, although accurate in static environments, exhibit 1.9-2.6 s latency, too slow for 

thermal welding or high-speed stacking. SPC, while computationally light, relies on rigid 

control charts that struggle with process drift, resulting in 15.3% false alarms, the highest 

among all methods. Offline inspection performs no real-time prevention, detecting defects 

only post-production. 

In contrast, the hybrid IoT-edge system strikes a balance between responsiveness and 

robustness, enabling immediate anomaly localization (<0.7 s) while dynamically adjusting 

detection sensitivity. This architectural alignment with operational tempo, not algorithmic 

complexity, proves to be the primary driver of observed improvements. 

4.3. Sensor Contribution and Modality Ablation 

To determine which sensing modalities exert the greatest influence on anomaly 

detection, an ablation study was conducted on weld-line production segments by 

selectively disabling specific sensor inputs. This approach isolates the marginal 

contribution of each modality and reveals sensitivity to temperature variation, vibration 

resonance, tool wear and visual surface change. Experiment results are summarized in 

Figure 3, where the full sensor fusion configuration is taken as the 100% baseline. 

 

Figure 3. Modality Ablation Impact on Detection Accuracy. 

Findings indicate that thermal and acoustic sensing jointly deliver the strongest 

detection capability, particularly in heat-affected fusion zones. Removing thermal data 
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alone reduced detection accuracy by 18.2%, confirming that real-time temperature 

tracking is essential to identifying sub-surface weld defects before they manifest visually. 

Meanwhile, acoustic features proved unexpectedly influential, enabling early detection of 

cutter instability and resonance drift several production cycles before surface degradation 

became visible. 

Vision-based inspection contributed mainly to final-stage confirmation, capturing 

appearance-level inconsistencies but rarely preceding thermal trends. Vibration data 

provided intermediate value, primarily signaling emerging mechanical faults rather than 

product-quality anomalies directly. These layered effects support the architectural 

decision outlined in Section 3.2: multi-modal sensing is complementary rather than 

redundant, with each signal channel augmenting the temporal detectability window. The 

combined sensor set not only improves recognition accuracy but also brings failures to 

light earlier, producing cleaner, more interpretable alert patterns. 

4.4. Operational Challenges and Practical Insights 

Despite the system's significant performance gains, several operational issues 

emerged during deployment. First, sensor misalignment occurred after scheduled 

equipment maintenance, particularly affecting acoustic and thermal nodes. This resulted 

in measurement drift and occasional false alerts, suggesting the need for automated re-

registration mechanisms to recalibrate sensors without halting production. Second, 

operators frequently dismissed low-severity alerts, perceiving them as background noise. 

While the system accurately detected early-stage anomalies, uniform alert severity led to 

reduced attention and delayed intervention. This indicates that graded alert scoring and 

adaptive visualization could improve human response. 

A third challenge involved sudden changes in raw material batches. In these events, 

the adaptive detection model required 2-6 hours to reach a new equilibrium state due to 

shifts in heat dissipation, surface reflectivity, or stiffness. Although the system eventually 

stabilized, integrating online few-shot learning may shorten adaptation windows and 

minimize quality variation during transitions. 

From these challenges, two insights are clear. Human-in-the-loop design remains 

indispensable, even highly sensitive systems underperform if operational staff disregard 

signals. Moreover, while weekly cloud-drift recalibration is effective, further advances 

such as meta-learning and rapid threshold self-adjustment could accelerate adaptation 

and reduce downtime. 

4.5. Theoretical and Industrial Implications 

The findings of this study demonstrate that effective quality monitoring does not 

require extensive labeled datasets. By leveraging short-term statistical fluctuations rather 

than historical defect annotations, the system adapts to process drift and variable 

operating conditions, challenging the traditional reliance on fully supervised learning for 

industrial quality control. This theoretical shift indicates that interpretability and 

adaptability can coexist with real-time responsiveness, offering a more scalable path 

toward autonomous manufacturing analytics. 

On the industrial side, the implications are immediate and practical. Real-time 

detection enables intervention before defects propagate downstream, reducing scrap 

generation rather than merely identifying faults after they occur. The hybrid edge-

computing structure lowers server load and operational cost, making deployment viable 

for small and medium-sized manufacturers, not only large factories. Additionally, the 

ablation findings provide data-driven guidance for sensor configuration, helping factories 

balance performance and budget. Ultimately, the system strengthens manufacturing 

resilience by improving visibility and response speed while reducing cognitive burden on 

operators, positioning human oversight as augmented rather than replaced. 
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5. Conclusion 

This study developed and validated a real-time quality monitoring architecture for 

smart manufacturing, built upon multi-modal IoT sensing, edge inference, and adaptive 

statistical thresholding. Unlike conventional cloud-driven or static SPC-based solutions, 

the proposed system achieves sub-second fault identification without requiring large-

scale historical defect labels. Through industrial deployment on Bosch automotive and 

CATL battery module production lines, the system demonstrated measurable and 

sustained gains, defect rate reductions of up to 31.4%, first-pass yield improvement 

exceeding 26%, and OEE increases beyond 7%. These results confirm not only the 

feasibility but also the economic value of integrating edge analytics with dynamic quality 

inference in high-velocity, high-variability manufacturing environments. 

Academically, this work reframes quality monitoring as a real-time stochastic 

adaptation problem rather than a label-dependent classification task. The introduced 

moving-window variability index and self-adjusting threshold model offer a lightweight 

path toward adaptive quality assurance, particularly in settings where defect data are 

scarce or process conditions evolve continuously. The ablation study further clarifies the 

contribution hierarchy of sensing modalities, thermal and acoustic signals exhibiting the 

strongest defect predictiveness, which provides a theoretical reference for sensor 

allocation and cost-efficient instrumentation. 

Practically, the implementation roadmap presented in the methodology section 

offers a replicable blueprint for factories transitioning toward Industry 4.0. The system's 

low bandwidth demand, rapid inferencing performance, and compatibility with existing 

MES/PLC infrastructure make it suitable not only for large-scale production but also for 

SMEs seeking scalable digitization. 

Future work will focus on three concrete directions: (1) integrating few-shot or meta-

learning mechanisms to accelerate model stabilization during material or tool transitions; 

(2) developing risk-tiered alerting interfaces to improve operator response and minimize 

alarm fatigue; and (3) extending the monitoring loop to include predictive maintenance, 

enabling gradual fault anticipation rather than pure anomaly response. Taken together, 

these pathways point toward an increasingly autonomous, interpretable, and 

economically deployable framework for intelligent quality assurance in modern 

manufacturing. 
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