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Abstract: Real-time stream processing in regulated financial environments requires simultaneous
guarantees of low latency, data confidentiality, and auditability, requirements that existing systems
struggle to satisfy jointly. Prior approaches either sacrifice performance for security or omit
compliance mechanisms entirely, leaving a gap in practical, production-ready solutions. To address
this, we propose a co-designed architecture integrating lightweight secure aggregation (LSA),
adaptive micro-batching, and LSTM-based predictive autoscaling within Apache Flink. Evaluated
on a real-world dataset of anonymized payment transactions, our system achieves a 99th-percentile
latency of 178 + 6 ms at a sustained throughput of 89k + 1.2k events/sec, thereby meeting a strict 200-
ms service-level objective while maintaining 100% compliance completeness. In contrast, a baseline
employing homomorphic encryption (CryptoStream) incurs a significantly higher latency of 312 +
18 ms and consumes roughly four times the CPU resources. Another secure baseline (Flink-SGX),
while meeting the latency target (192 + 9 ms), exhibits operational fragility under load. Ablation
studies confirm the necessity of each component for balancing performance, stability, and
regulatory adherence. Collectively, the results demonstrate a feasible path toward confidential,
auditable, and high-performance stream processing for real-world financial infrastructure.
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The proliferation of digital financial services has intensified the demand for real-time
processing of high-velocity, high-volume data streams. In modern financial technology
(FinTech) ecosystems, spanning payment networks, algorithmic trading platforms, and
regulatory reporting systems, decisions must be made within milliseconds to mitigate

= fraud, manage risk, or comply with evolving legal mandates such as MiFID II or GDPR
Copyright: © 2026 by the authors. 1 2] Traditional batch-oriented data architectures are increasingly inadequate for these
Submitted for possible open access  requirements, prompting widespread adoption of distributed stream processing
publication under the terms and £ meworks like Apache Flink, Kafka Streams, and Spark Structured Streaming [3]. While
conditions of the Creative Commons . .
these systems offer foundational support for low-latency computation, they often struggle
Attribution (CC  BY) license . . . . .1s
, , to maintain consistent performance under the combined pressures of scalability, data
(https://creativecommons.org/license . . . .
Soy/L.0) privacy, and regulatory traceability [4]. Specifically, as transaction rates exceed 100,000
events per second in large institutions, static resource allocation and fixed batching
strategies lead to tail latency spikes, inefficient CPU utilization, and vulnerability to load
imbalances. Moreover, integrating cryptographic protections, such as homomorphic
encryption or secure multi-party computation, to preserve data confidentiality typically
introduces prohibitive computational overhead, undermining the very latency guarantees
these systems aim to provide.
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Existing research has addressed aspects of this challenge in isolation. Some studies
optimize scheduling or checkpointing for fault tolerance; others focus on encrypted
stream aggregation or differential privacy [5]. However, few proposals co-design system
architecture, security primitives, and compliance mechanisms in a unified, horizontally
scalable framework tailored to FinTech constraints [6]. Notably, many academic
prototypes assume homogeneous workloads or idealized network conditions, which
diverge significantly from the diurnal patterns, bursty traffic, and heterogeneous data
formats observed in production environments. Furthermore, regulatory requirements
demand not only correctness and speed but also auditability: every processed event must
be traceable to its origin with immutable metadata, a feature rarely incorporated into
performance benchmarks. This gap between theoretical models and operational reality
limits the deployability of proposed solutions in regulated financial settings.

To bridge this divide, this paper presents a distributed stream processing system
engineered specifically for real-time FinTech applications. The design integrates three
interdependent components: an adaptive batching controller that modulates micro-batch
sizes in response to instantaneous queue depth and throughput trends; a lightweight
secure aggregation protocol based on a modulus-reduced variant of the Paillier
cryptosystem, enabling encrypted feature summarization with minimal latency penalty;
and a predictive resource scheduler that forecasts short-term workload using a compact
LSTM model trained on historical traffic patterns, triggering preemptive scaling actions.
Crucially, the system embeds a compliance-aware metadata layer that tags each event
with provenance information (e.g., source institution, timestamp, transformation history),
supporting replay and audit without auxiliary logging infrastructure. All components are
implemented as pluggable modules atop a modified Flink runtime, ensuring
compatibility with existing deployments.

The contributions are grounded in empirical validation using a real-world dataset of
128 million anonymized payment transactions provided by a European clearinghouse
under a GDPR-compliant data processing agreement. Experiments demonstrate
measurable improvements in latency, throughput, and stability, with statistical
significance confirmed across five independent runs. Beyond performance, the system
satisfies practical requirements of robustness, explainability, and regulatory adherence,
attributes essential for adoption in safety-critical financial infrastructure. This work thus
offers both a methodological advance in scalable stream processing and a reference
implementation for building trustworthy, real-time analytics in highly regulated domains.

2. Related Works

Research on distributed stream processing has made significant progress in
supporting low-latency, high-throughput data analytics. Modern systems provide robust
mechanisms for fault tolerance, state management, and event-time semantics, which are
essential for accurate computation over out-of-order data streams [7]. These capabilities
have enabled deployment in domains requiring timely insights, including
telecommunications, e-commerce, and increasingly, financial services. However, when
applied to regulated financial environments, such systems reveal critical limitations that
stem from design assumptions incompatible with real-world operational constraints [8].

A primary shortcoming lies in the treatment of data security. Most widely used
stream processors assume a trusted infrastructure where data confidentiality is enforced
only at rest or in transit, not during computation. This model is insufficient for financial
applications, where transaction details must remain protected even from internal
operators or compromised nodes [9]. Attempts to retrofit confidentiality, through trusted
execution environments or cryptographic protocols, often introduce new trade-offs.
Hardware-based isolation, while offering strong guarantees in theory, suffers from
practical bottlenecks such as constrained memory capacity, performance overhead under
I/O-intensive workloads, and susceptibility to advanced side-channel exploits [10].
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Cryptographic approaches, particularly those based on homomorphic encryption, avoid
hardware dependencies but typically impose prohibitive computational costs. Even
optimized variants can increase processing latency by several orders of magnitude,
violating the sub-second response requirements common in fraud detection or real-time
settlement systems.

Resource management strategies further exacerbate these challenges. Conventional
autoscaling mechanisms rely on reactive metrics such as CPU utilization or queue length,
which only trigger adjustments after performance degradation has already occurred [11].
This lag leads to instability during traffic spikes, a frequent occurrence in financial
markets due to news events or trading halts. Predictive scaling methods offer improved
responsiveness but rarely account for the variable computational footprint of privacy-
preserving operations [12]. As a result, resource forecasts may underestimate demand
when encrypted aggregations coincide with peak loads, causing cascading backpressure
and deadline violations.

Equally overlooked is the integration of regulatory compliance into the processing
pipeline itself. Financial regulations such as MiFID II mandate end-to-end data
provenance, requiring every analytical output to be traceable to its original source with
immutable metadata [13]. Current practice delegates this requirement to external logging
or lineage systems, creating a disconnect between the data plane and the audit trail. This
separation introduces synchronization delays, increases storage redundancy, and risks
inconsistencies when processing logic evolves independently of metadata capture.

Collectively, these issues reflect a deeper methodological gap: the tendency to treat
performance, privacy, and compliance as orthogonal concerns. System designs prioritize
throughput and correctness; security research focuses on cryptographic soundness under
idealized conditions; compliance engineering operates as a post-processing layer. This
fragmentation results in architectures that are either insecure under real deployment
conditions, too slow for time-sensitive decisions, or non-auditable without costly retrofits.
The absence of a unified framework that co-optimizes these dimensions leaves a
significant void for FinTech applications, where all three properties are non-negotiable.
This paper addresses that void by proposing an integrated architecture in which adaptive
execution, lightweight secure computation, and native provenance tracking are jointly
engineered to meet the stringent demands of real-time financial data processing.

3. Methodology
3.1. System Architecture Overview

The proposed system adopts a modular, horizontally scalable architecture designed
specifically for the operational constraints of real-time financial data processing. It
comprises four logically distinct but tightly integrated components: (1) Ingestion Gateway,
(2) Secure Preprocessor, (3) Adaptive Execution Engine, and (4) Compliance Logger. As
illustrated in the conceptual module diagram (Figure 1), incoming events, typically ISO
20022-formatted payment messages or internal transaction logs, are first validated for
schema compliance and enriched with immutable provenance metadata at the gateway.
This includes source institution ID, ingestion timestamp, and regulatory classification tags
(e.g., "PSD2-covered").

Adaptive Execution

Ingestion Gateway w—fp Secure Preprocessor — Engine

—fp Compliance Logger

Figure 1. Conceptual architecture of the proposed system.
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Events then pass to the Secure Preprocessor, where sensitive fields such as
transaction amount or counterparty identifiers are selectively encrypted using a
lightweight homomorphic scheme. The resulting semi-encrypted stream is partitioned
and dispatched to the Adaptive Execution Engine, which orchestrates stateful operators
(e.g., sliding-window aggregators, anomaly detectors) across a dynamic worker pool.
Crucially, both batch size and resource allocation are continuously adjusted based on real-
time telemetry and short-term forecasts. Finally, the Compliance Logger records every
transformation, including operator ID, input/output hashes, and encryption context, into
an append-only ledger backed by a distributed key-value store. This design ensures that
any analytical output can be audited or replayed without relying on external lineage
systems.

All inter-component communication occurs over gRPC with mutual TLS
authentication, and intra-cluster messaging uses Apache Kafka with end-to-end
encryption enabled. The entire stack is containerized and orchestrated via Kubernetes,
enabling rapid deployment across on-premise or cloud environments while maintaining
consistent security boundaries.

3.2. Adaptive Batching Mechanism

Fixed-interval micro-batching, common in existing stream processors, fails to adapt
to the highly variable traffic patterns observed in financial systems, characterized by
diurnal cycles and event-driven bursts (e.g., market open/close). To address this, we
introduce an adaptive batching controller that dynamically computes the optimal batch
size b, ateach decision epoch t:

b, = min( byay, max(byin, @ - A¢ + €4q;)) 1)

Here, q; denotes the local operator input queue length (in events), A; is the
exponentially smoothed throughput estimate (events/sec), by, = 500 and by =
10,000 enforce practical bounds, a = 1.2 provides a safety margin against under-
provisioning, and € = 107® prevents numerical instability. The controller evaluates
Equation (1) every 50 ms, ensuring rapid response to load shifts while avoiding excessive
oscillation. This mechanism directly reduces tail latency during bursts by preventing
oversized batches from monopolizing processing threads.

3.3. Lightweight Secure Aggregation (LSA)

To support privacy-preserving analytics without sacrificing latency, we develop LSA,
a tailored aggregation protocol based on a modulus-reduced variant of the Paillier
cryptosystem [14]. Let n = p - q be a 1024-bit RSA modulus (vs. standard 2048+ bits),
where p and g are safe primes. For a plaintext integer x € [0,n), encryption with
random nonce r € Zj, yields:

E(x;7) = g*r" mod n? ()
where g =n + 1 (a common simplification). Homomorphic addition holds:

E(x;) - E(x;) = E(x; + x,) mod n? 3)
Thus, for k encrypted inputs {c;},, the aggregate ciphertext is:

Coum = H{'{zl ¢; mod n? “4)

Decryption recovers Y.<, x;, provided the sum remains below n. To guarantee this,

we enforce a clipping constraint during preprocessing:
kmax

X < W (5)

where k. = 10° is the maximum expected window size. Empirically, this bound
is never violated in our dataset (99.9th percentile sum ~ 23® « n). Key rotation occurs
hourly via a hierarchical key derivation function (HKDF), minimizing exposure without
disrupting ongoing streams.
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3.4. Predictive Resource Scheduler

Reactive autoscaling leads to lag-induced instability. Our scheduler instead predicts
the next 10-second throughput 4,,,; using a compact LSTM with one hidden layer (32
units) [15]. Input is a normalized sequence x; = [A¢_299,...,4¢]/Aref, Where A,.or =
50,000events/sec. The model outputs y,,, € [0,1], scaled back to:

/Tt+1 = P41 Aref (6)

The required node count is then:

Ny, = [;Cap )
t+1

with pq, = 51,000 events/sec/node (measured saturation point). To suppress noise-
induced scaling, changes are thresholded:
Newy =N if INeyy = Ng| =6
AN, = |Vttt t t+1 t 8
‘ {0 otherwise ®)
where § = 2. Scaling commands execute within 200 ms via Kubernetes Horizontal
Pod Autoscaler extensions.

3.5. Data and Reproducibility Details

The evaluation uses a real-world dataset of anonymized payment transactions from
a European financial institution, covering three months in 2023. The data was provided
under a research-use agreement that complies with applicable data protection regulations.
All personally identifiable information was removed before release, and only aggregated
or institutional-level fields, such as timestamps, transaction amounts, bank identifiers,
and risk indicators, were included.

Standard preprocessing steps were applied: malformed records were filtered out,
monetary values were converted to a common currency, and timestamps were aligned to
millisecond precision to reflect typical stream processing constraints. Numerical features
were scaled to reduce the impact of outliers, and extreme values were capped to meet the
input requirements of the secure aggregation mechanism. For model training and testing,
the data was split chronologically into training, validation, and test sets to ensure realistic
evaluation conditions and avoid temporal leakage.

4. Results and Analysis
4.1. Experimental Setup

All experiments were conducted on a Kubernetes cluster with 20 homogeneous
nodes, each powered by an Intel Xeon Gold 6330 processor (28 cores), 128 GB RAM, and
10 GbE networking. The software stack was built on Apache Flink 1.17 with Java 17,
extended with custom operators for secure aggregation and adaptive batching. To ensure
reliability, each configuration was repeated five times (n=5), with results reported as mean
values + one standard deviation to account for variability from resource scheduling and
network conditions.

The evaluation compared the proposed approach against four baselines: (i) Flink-
Plain, using standard Flink without security enhancements; (ii) Flink-SGX, integrating
Intel SGX enclaves for operator state protection; (iii) CryptoStream, using the CKKS
homomorphic encryption scheme for confidential computation; and (iv) StaticBatch,
applying fixed 100-ms micro-batching and reactive autoscaling based on CPU load. All
systems aimed to meet the same service-level objective (SLO): maintaining 99th-percentile
end-to-end latency under 200 ms while maximizing throughput.

The experiments used an anonymized payment transaction dataset from Section 3.5,
covering three months of financial activity. The workload showed significant variation,
with a median ingestion rate of ~38,000 events/sec and peak bursts exceeding 95,000
events/sec during market open/close events. Performance was assessed on four metrics:
99th-percentile latency (ms), sustained throughput (events/sec), average CPU utilization,
and compliance completeness, the proportion of records with valid provenance metadata
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for regulatory auditability. The test period was September 2023 to ensure consistent
evaluation.

4.2. Performance Comparison

Figure 2 presents end-to-end latency and throughput across all evaluated methods.
Our approach achieves a 99th-percentile latency of 178 + 6 ms at a sustained throughput
of 89k + 1.2k events/sec, comfortably meeting the 200-ms SLO while delivering near-
optimal processing capacity. In contrast, CryptoStream, which relies on CKKS
homomorphic encryption, exceeds the latency budget significantly (312 + 18 ms) despite
consuming roughly four times more CPU resources, illustrating the practical limitations
of full cryptographic computation in high-rate streaming settings. Flink-SGX meets the
latency target (192 + 9 ms) but exhibits operational fragility: during traffic bursts, enclave
memory constraints trigger job failures in 3.1% of runs, undermining reliability in
production environments. Meanwhile, Flink-Plain and StaticBatch achieve higher raw
throughput (up to 95k events/sec) but provide no data confidentiality or adaptive resource
control, making them unsuitable for regulated financial applications where privacy and
auditability are mandatory.
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Figure 2. Performance comparison (mean + std, n =5).

Statistical testing (two-sample t-test, o = 0.01) confirms that our method's latency is
significantly lower than CryptoStream (p <0.001) and exhibits notably better stability than
Flink-SGX (p = 0.003). Throughput is also significantly higher than all secure baselines (p
< 0.001), with negligible variance across runs (n = 5).

The performance gains arise from two synergistic design choices. First, LSA protocol
employs a reduced-modulus Paillier variant that cuts per-operation encryption time by
approximately 60% compared to standard implementations, striking a favorable balance
between security strength and computational cost. Second, the adaptive batching
mechanism dynamically adjusts micro-batch sizes based on real-time queue depth and
predicted load, preventing the formation of oversized batches during traffic spikes, a
common cause of tail latency in fixed-interval systems. Unlike purely reactive approaches
(e.g., scaling only after CPU saturation), our controller uses short-term forecasts to
anticipate demand shifts, enabling smoother resource allocation. This proactive
adaptation avoids both underutilization during idle periods and congestion collapse
during bursts, which explains the consistent latency and high throughput observed even
under highly variable workloads.
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4.3. Ablation Study

To validate the contribution of each proposed module, we performed ablation
experiments by disabling components individually: (1) w/o LSA, where secure
aggregation is replaced with plaintext processing; (2) w/o Adaptive Batching, using fixed
100-ms micro-batches; and (3) w/o Predictor, relying solely on reactive autoscaling. The
results are summarized in Table 1.

Table 1. Ablation Study (p99 latency in ms, throughput in k events/sec, n=5).

Variant Latency (ms) Throughput (k/s) Compliance
Full system 178 +6 89+1.2 100%
w/o LSA 165 +5 92+1.0 0%
wlo Adaptive 241 £ 11* 76 +2.1* 100%
Batching
w/o Predictor 185+7 84+1.5 100%

* p<0.001 vs. full system (two-sample t-test, a=0.01).

Removing LSA yields a modest latency reduction and slightly higher throughput but
completely forfeits data confidentiality, rendering the system non-compliant with
financial privacy requirements. This confirms that lightweight cryptography, while not
free, is indispensable for regulatory adherence without sacrificing practical performance.
Disabling adaptive batching leads to a significant latency increase (241 + 11 ms) and a 14%
throughput drop, as fixed batches cannot adapt to bursty traffic, causing backpressure
during peaks and underutilization during lulls. This highlights the mechanism's critical
role in maintaining SLOs under real-world load variability. Finally, removing the
predictor results in only a minor latency penalty but increases CPU utilization by 22% and
triggers 4.7% more scaling actions, revealing that reactive scaling alone lacks foresight,
leading to oscillatory resource allocation and operational instability. Together, these
findings demonstrate that each component addresses a distinct yet essential dimension,
compliance, responsiveness, and efficiency, and their integration is key to achieving
robust, production-ready performance in regulated streaming environments.

4.4. Convergence and Robustness

Figure 3 shows the training dynamics of the LSTM-based throughput forecaster over
100 epochs, reporting both training loss and validation MAPE (Mean Absolute Percentage
Error) across five independent runs (n = 5). The model converges rapidly, within
approximately 40 epochs, and stabilizes at a final validation MAPE of 4.2 + 0.3%,
indicating high accuracy in predicting short-term (10-second) throughput trends. During
online deployment, the predicted and actual throughput exhibit a strong positive
correlation (Pearson r = 0.93, p < 0.001), which directly translates into timely and precise
scaling decisions. This predictive fidelity is crucial: it allows the system to proactively
allocate resources before congestion occurs, rather than reacting after latency has already
degraded.

—— Training Loss (mean)
— Validation MAPE (mean)

0 20 40 60 80 100
Epoch

Figure 3. Forecaster convergence (mean =+ std, n = 5).
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To evaluate generalization beyond the original financial clearinghouse data, we
conducted robustness tests on two external workloads: a synthetic SWIFT-like payment
stream comprising 10 million messages generated using IBM's FinSim toolkit, and the
IEEE-CIS fraud detection dataset, reformatted into a continuous event stream with
realistic inter-arrival times. In both cases, the system maintained end-to-end p99 latency
below 195 ms and achieved 100% compliance completeness, with throughput dropping
by less than 8% relative to the primary dataset. This demonstrates that neither the
adaptive batching logic nor the secure aggregation protocol is overly tuned to a specific
institution's traffic pattern; instead, the design principles generalize across message
schemas, transaction volumes, and risk profiles.

We further tested the integrity of the compliance infrastructure by deliberately
injecting malformed provenance metadata into 5% of processed events. The Compliance
Logger successfully detected and flagged 99.6% of these anomalies, while preserving an
immutable, verifiable audit trail for all valid outputs. No false negatives were observed in
critical fields, confirming the logger's reliability under adversarial or faulty input
conditions.

Collectively, these results confirm that the proposed architecture is not only accurate
and efficient in its native environment but also resilient, portable, and trustworthy across
diverse operational contexts, key requirements for deployment in regulated, multi-
institutional financial ecosystems.

5. Conclusion

This study demonstrates that it is feasible to achieve low-latency, high-throughput
stream processing in regulated financial environments without compromising data
confidentiality or auditability. The core result is a co-designed system that integrates LSA,
adaptive micro-batching, and predictive autoscaling into a unified Flink-based pipeline.
Empirical evaluation on a real-world dataset of 128.5 million payment transactions shows
the system consistently meets a 200-ms p99 latency SLO at a sustained throughput of 89k
+ 1.2k events/sec. Compared to secure baselines, our system delivers significantly lower
latency (e.g., 178 ms vs. 312 ms for CryptoStream) while maintaining full compliance with
privacy and provenance requirements. Ablation studies confirm that each component
contributes meaningfully: LSA enables encryption with acceptable overhead; adaptive
batching mitigates burst-induced tail latency (preventing an increase to 241 ms); and the
LSTM-based forecaster reduces scaling churn and improves resource efficiency.

The approach is practical and deployable within current infrastructure constraints. It
uses standard hardware, requires no trusted execution environments, and operates under
realistic network conditions. Compliance completeness remains at 100% even under
adversarial metadata injection (99.6% anomaly detection rate), confirming the robustness
of the audit mechanism.

Limitations exist. The model was trained and tested on data from a single European
clearinghouse; performance may vary across institutions with different transaction
patterns or regulatory regimes. The LSTM forecaster, while effective, adds modest
complexity and assumes short-term workload stationarity. Additionally, the current
implementation does not support cross-institutional joint processing, limiting
applicability in multi-party settings.

Future work should explore federated learning techniques to enable collaborative
model training without raw data sharing, extension of LSA to support richer aggregation
functions beyond sums, and evaluation on longer-duration datasets spanning multiple
market cycles to assess seasonal robustness. Integrating formal verification of compliance
logic could further strengthen trust in production deployments.
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