
Simen Owen Academic

Proceedings Series

Vol. 3 2026

Vol. 3 (2026) 198

Article

Scalable Distributed Systems for Real-Time Big Data

Processing in Financial Technology

Ruilin Zhang 1,*

1 East China University of Science and Technology, Shanghai, China

* Correspondence: Ruilin Zhang, East China University of Science and Technology, Shanghai, China

Abstract: Real-time stream processing in regulated financial environments requires simultaneous

guarantees of low latency, data confidentiality, and auditability, requirements that existing systems

struggle to satisfy jointly. Prior approaches either sacrifice performance for security or omit

compliance mechanisms entirely, leaving a gap in practical, production-ready solutions. To address

this, we propose a co-designed architecture integrating lightweight secure aggregation (LSA),

adaptive micro-batching, and LSTM-based predictive autoscaling within Apache Flink. Evaluated

on a real-world dataset of anonymized payment transactions, our system achieves a 99th-percentile

latency of 178 ± 6 ms at a sustained throughput of 89k ± 1.2k events/sec, thereby meeting a strict 200-

ms service-level objective while maintaining 100% compliance completeness. In contrast, a baseline

employing homomorphic encryption (CryptoStream) incurs a significantly higher latency of 312 ±

18 ms and consumes roughly four times the CPU resources. Another secure baseline (Flink-SGX),

while meeting the latency target (192 ± 9 ms), exhibits operational fragility under load. Ablation

studies confirm the necessity of each component for balancing performance, stability, and

regulatory adherence. Collectively, the results demonstrate a feasible path toward confidential,

auditable, and high-performance stream processing for real-world financial infrastructure.

Keywords: secure stream processing; adaptive batching; lightweight cryptography; regulatory

compliance; real-time analytics

1. Introduction

The proliferation of digital financial services has intensified the demand for real-time

processing of high-velocity, high-volume data streams. In modern financial technology

(FinTech) ecosystems, spanning payment networks, algorithmic trading platforms, and

regulatory reporting systems, decisions must be made within milliseconds to mitigate

fraud, manage risk, or comply with evolving legal mandates such as MiFID II or GDPR

[1,2]. Traditional batch-oriented data architectures are increasingly inadequate for these

requirements, prompting widespread adoption of distributed stream processing

frameworks like Apache Flink, Kafka Streams, and Spark Structured Streaming [3]. While

these systems offer foundational support for low-latency computation, they often struggle

to maintain consistent performance under the combined pressures of scalability, data

privacy, and regulatory traceability [4]. Specifically, as transaction rates exceed 100,000

events per second in large institutions, static resource allocation and fixed batching

strategies lead to tail latency spikes, inefficient CPU utilization, and vulnerability to load

imbalances. Moreover, integrating cryptographic protections, such as homomorphic

encryption or secure multi-party computation, to preserve data confidentiality typically

introduces prohibitive computational overhead, undermining the very latency guarantees

these systems aim to provide.

Received: 12 December 2025

Revised: 03 February 2026

Accepted: 14 February 2026

Published: 17 February 2026

Copyright: © 2026 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Open Access

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 199

Existing research has addressed aspects of this challenge in isolation. Some studies

optimize scheduling or checkpointing for fault tolerance; others focus on encrypted

stream aggregation or differential privacy [5]. However, few proposals co-design system

architecture, security primitives, and compliance mechanisms in a unified, horizontally

scalable framework tailored to FinTech constraints [6]. Notably, many academic

prototypes assume homogeneous workloads or idealized network conditions, which

diverge significantly from the diurnal patterns, bursty traffic, and heterogeneous data

formats observed in production environments. Furthermore, regulatory requirements

demand not only correctness and speed but also auditability: every processed event must

be traceable to its origin with immutable metadata, a feature rarely incorporated into

performance benchmarks. This gap between theoretical models and operational reality

limits the deployability of proposed solutions in regulated financial settings.

To bridge this divide, this paper presents a distributed stream processing system

engineered specifically for real-time FinTech applications. The design integrates three

interdependent components: an adaptive batching controller that modulates micro-batch

sizes in response to instantaneous queue depth and throughput trends; a lightweight

secure aggregation protocol based on a modulus-reduced variant of the Paillier

cryptosystem, enabling encrypted feature summarization with minimal latency penalty;

and a predictive resource scheduler that forecasts short-term workload using a compact

LSTM model trained on historical traffic patterns, triggering preemptive scaling actions.

Crucially, the system embeds a compliance-aware metadata layer that tags each event

with provenance information (e.g., source institution, timestamp, transformation history),

supporting replay and audit without auxiliary logging infrastructure. All components are

implemented as pluggable modules atop a modified Flink runtime, ensuring

compatibility with existing deployments.

The contributions are grounded in empirical validation using a real-world dataset of

128 million anonymized payment transactions provided by a European clearinghouse

under a GDPR-compliant data processing agreement. Experiments demonstrate

measurable improvements in latency, throughput, and stability, with statistical

significance confirmed across five independent runs. Beyond performance, the system

satisfies practical requirements of robustness, explainability, and regulatory adherence,

attributes essential for adoption in safety-critical financial infrastructure. This work thus

offers both a methodological advance in scalable stream processing and a reference

implementation for building trustworthy, real-time analytics in highly regulated domains.

2. Related Works

Research on distributed stream processing has made significant progress in

supporting low-latency, high-throughput data analytics. Modern systems provide robust

mechanisms for fault tolerance, state management, and event-time semantics, which are

essential for accurate computation over out-of-order data streams [7]. These capabilities

have enabled deployment in domains requiring timely insights, including

telecommunications, e-commerce, and increasingly, financial services. However, when

applied to regulated financial environments, such systems reveal critical limitations that

stem from design assumptions incompatible with real-world operational constraints [8].

A primary shortcoming lies in the treatment of data security. Most widely used

stream processors assume a trusted infrastructure where data confidentiality is enforced

only at rest or in transit, not during computation. This model is insufficient for financial

applications, where transaction details must remain protected even from internal

operators or compromised nodes [9]. Attempts to retrofit confidentiality, through trusted

execution environments or cryptographic protocols, often introduce new trade-offs.

Hardware-based isolation, while offering strong guarantees in theory, suffers from

practical bottlenecks such as constrained memory capacity, performance overhead under

I/O-intensive workloads, and susceptibility to advanced side-channel exploits [10].

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 200

Cryptographic approaches, particularly those based on homomorphic encryption, avoid

hardware dependencies but typically impose prohibitive computational costs. Even

optimized variants can increase processing latency by several orders of magnitude,

violating the sub-second response requirements common in fraud detection or real-time

settlement systems.

Resource management strategies further exacerbate these challenges. Conventional

autoscaling mechanisms rely on reactive metrics such as CPU utilization or queue length,

which only trigger adjustments after performance degradation has already occurred [11].

This lag leads to instability during traffic spikes, a frequent occurrence in financial

markets due to news events or trading halts. Predictive scaling methods offer improved

responsiveness but rarely account for the variable computational footprint of privacy-

preserving operations [12]. As a result, resource forecasts may underestimate demand

when encrypted aggregations coincide with peak loads, causing cascading backpressure

and deadline violations.

Equally overlooked is the integration of regulatory compliance into the processing

pipeline itself. Financial regulations such as MiFID II mandate end-to-end data

provenance, requiring every analytical output to be traceable to its original source with

immutable metadata [13]. Current practice delegates this requirement to external logging

or lineage systems, creating a disconnect between the data plane and the audit trail. This

separation introduces synchronization delays, increases storage redundancy, and risks

inconsistencies when processing logic evolves independently of metadata capture.

Collectively, these issues reflect a deeper methodological gap: the tendency to treat

performance, privacy, and compliance as orthogonal concerns. System designs prioritize

throughput and correctness; security research focuses on cryptographic soundness under

idealized conditions; compliance engineering operates as a post-processing layer. This

fragmentation results in architectures that are either insecure under real deployment

conditions, too slow for time-sensitive decisions, or non-auditable without costly retrofits.

The absence of a unified framework that co-optimizes these dimensions leaves a

significant void for FinTech applications, where all three properties are non-negotiable.

This paper addresses that void by proposing an integrated architecture in which adaptive

execution, lightweight secure computation, and native provenance tracking are jointly

engineered to meet the stringent demands of real-time financial data processing.

3. Methodology

3.1. System Architecture Overview

The proposed system adopts a modular, horizontally scalable architecture designed

specifically for the operational constraints of real-time financial data processing. It

comprises four logically distinct but tightly integrated components: (1) Ingestion Gateway,

(2) Secure Preprocessor, (3) Adaptive Execution Engine, and (4) Compliance Logger. As

illustrated in the conceptual module diagram (Figure 1), incoming events, typically ISO

20022-formatted payment messages or internal transaction logs, are first validated for

schema compliance and enriched with immutable provenance metadata at the gateway.

This includes source institution ID, ingestion timestamp, and regulatory classification tags

(e.g., "PSD2-covered").

Figure 1. Conceptual architecture of the proposed system.

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 201

Events then pass to the Secure Preprocessor, where sensitive fields such as

transaction amount or counterparty identifiers are selectively encrypted using a

lightweight homomorphic scheme. The resulting semi-encrypted stream is partitioned

and dispatched to the Adaptive Execution Engine, which orchestrates stateful operators

(e.g., sliding-window aggregators, anomaly detectors) across a dynamic worker pool.

Crucially, both batch size and resource allocation are continuously adjusted based on real-

time telemetry and short-term forecasts. Finally, the Compliance Logger records every

transformation, including operator ID, input/output hashes, and encryption context, into

an append-only ledger backed by a distributed key-value store. This design ensures that

any analytical output can be audited or replayed without relying on external lineage

systems.

All inter-component communication occurs over gRPC with mutual TLS

authentication, and intra-cluster messaging uses Apache Kafka with end-to-end

encryption enabled. The entire stack is containerized and orchestrated via Kubernetes,

enabling rapid deployment across on-premise or cloud environments while maintaining

consistent security boundaries.

3.2. Adaptive Batching Mechanism

Fixed-interval micro-batching, common in existing stream processors, fails to adapt

to the highly variable traffic patterns observed in financial systems, characterized by

diurnal cycles and event-driven bursts (e.g., market open/close). To address this, we

introduce an adaptive batching controller that dynamically computes the optimal batch

size 𝑏𝑡 at each decision epoch 𝑡:

𝑏𝑡 = min(𝑏max, max(𝑏min, 𝛼 ⋅ 𝜆𝑡 + 𝜖𝑞𝑡)) (1)

Here, 𝑞𝑡 denotes the local operator input queue length (in events), 𝜆𝑡 is the

exponentially smoothed throughput estimate (events/sec), 𝑏min = 500 and 𝑏max =

10,000 enforce practical bounds, 𝛼 = 1.2 provides a safety margin against under-

provisioning, and 𝜖 = 10−6 prevents numerical instability. The controller evaluates

Equation (1) every 50 ms, ensuring rapid response to load shifts while avoiding excessive

oscillation. This mechanism directly reduces tail latency during bursts by preventing

oversized batches from monopolizing processing threads.

3.3. Lightweight Secure Aggregation (LSA)

To support privacy-preserving analytics without sacrificing latency, we develop LSA,

a tailored aggregation protocol based on a modulus-reduced variant of the Paillier

cryptosystem [14]. Let 𝑛 = 𝑝 ⋅ 𝑞 be a 1024-bit RSA modulus (vs. standard 2048+ bits),

where 𝑝 and 𝑞 are safe primes. For a plaintext integer 𝑥 ∈ [0, 𝑛) , encryption with

random nonce 𝑟 ∈ ℤ𝑛
∗ yields:

𝐸(𝑥; 𝑟) = 𝑔𝑥𝑟𝑛 mod 𝑛2 (2)

where 𝑔 = 𝑛 + 1 (a common simplification). Homomorphic addition holds:

𝐸(𝑥1) ⋅ 𝐸(𝑥2) ≡ 𝐸(𝑥1 + 𝑥2) mod 𝑛2 (3)

Thus, for 𝑘 encrypted inputs {𝑐𝑖}𝑖=1
𝑘 , the aggregate ciphertext is:

𝐶𝑠𝑢𝑚 = ∏ 𝑐𝑖
𝑘
𝑖=1 mod 𝑛2 (4)

Decryption recovers ∑ 𝑥𝑖
𝑘
𝑖=1 , provided the sum remains below 𝑛. To guarantee this,

we enforce a clipping constraint during preprocessing:

𝑥𝑖 ≤
𝑘max

𝑛
 (5)

where 𝑘max = 105 is the maximum expected window size. Empirically, this bound

is never violated in our dataset (99.9th percentile sum ≈ 238 ≪ 𝑛). Key rotation occurs

hourly via a hierarchical key derivation function (HKDF), minimizing exposure without

disrupting ongoing streams.

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 202

3.4. Predictive Resource Scheduler

Reactive autoscaling leads to lag-induced instability. Our scheduler instead predicts

the next 10-second throughput 𝜆̂𝑡+1 using a compact LSTM with one hidden layer (32

units) [15]. Input is a normalized sequence 𝑥𝑡 = [𝜆𝑡−299, . . . , 𝜆𝑡]/𝜆𝑟𝑒𝑓 , where 𝜆𝑟𝑒𝑓 =

50,000events/sec. The model outputs 𝑦̂𝑡+1 ∈ [0,1], scaled back to:

𝜆̂𝑡+1 = 𝑦̂𝑡+1 ⋅ 𝜆𝑟𝑒𝑓 (6)

The required node count is then:

𝑁𝑡+1 = ⌈
𝜇𝑐𝑎𝑝

𝜆̂𝑡+1
⌉ (7)

with 𝜇𝑐𝑎𝑝 = 51,000 events/sec/node (measured saturation point). To suppress noise-

induced scaling, changes are thresholded:

Δ𝑁𝑡 = {
𝑁𝑡+1 − 𝑁𝑡 𝑖𝑓 |𝑁𝑡+1 − 𝑁𝑡| ≥ 𝛿
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

where 𝛿 = 2. Scaling commands execute within 200 ms via Kubernetes Horizontal

Pod Autoscaler extensions.

3.5. Data and Reproducibility Details

The evaluation uses a real-world dataset of anonymized payment transactions from

a European financial institution, covering three months in 2023. The data was provided

under a research-use agreement that complies with applicable data protection regulations.

All personally identifiable information was removed before release, and only aggregated

or institutional-level fields, such as timestamps, transaction amounts, bank identifiers,

and risk indicators, were included.

Standard preprocessing steps were applied: malformed records were filtered out,

monetary values were converted to a common currency, and timestamps were aligned to

millisecond precision to reflect typical stream processing constraints. Numerical features

were scaled to reduce the impact of outliers, and extreme values were capped to meet the

input requirements of the secure aggregation mechanism. For model training and testing,

the data was split chronologically into training, validation, and test sets to ensure realistic

evaluation conditions and avoid temporal leakage.

4. Results and Analysis

4.1. Experimental Setup

All experiments were conducted on a Kubernetes cluster with 20 homogeneous

nodes, each powered by an Intel Xeon Gold 6330 processor (28 cores), 128 GB RAM, and

10 GbE networking. The software stack was built on Apache Flink 1.17 with Java 17,

extended with custom operators for secure aggregation and adaptive batching. To ensure

reliability, each configuration was repeated five times (n=5), with results reported as mean

values ± one standard deviation to account for variability from resource scheduling and

network conditions.

The evaluation compared the proposed approach against four baselines: (i) Flink-

Plain, using standard Flink without security enhancements; (ii) Flink-SGX, integrating

Intel SGX enclaves for operator state protection; (iii) CryptoStream, using the CKKS

homomorphic encryption scheme for confidential computation; and (iv) StaticBatch,

applying fixed 100-ms micro-batching and reactive autoscaling based on CPU load. All

systems aimed to meet the same service-level objective (SLO): maintaining 99th-percentile

end-to-end latency under 200 ms while maximizing throughput.

The experiments used an anonymized payment transaction dataset from Section 3.5,

covering three months of financial activity. The workload showed significant variation,

with a median ingestion rate of ~38,000 events/sec and peak bursts exceeding 95,000

events/sec during market open/close events. Performance was assessed on four metrics:

99th-percentile latency (ms), sustained throughput (events/sec), average CPU utilization,

and compliance completeness, the proportion of records with valid provenance metadata

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 203

for regulatory auditability. The test period was September 2023 to ensure consistent

evaluation.

4.2. Performance Comparison

Figure 2 presents end-to-end latency and throughput across all evaluated methods.

Our approach achieves a 99th-percentile latency of 178 ± 6 ms at a sustained throughput

of 89k ± 1.2k events/sec, comfortably meeting the 200-ms SLO while delivering near-

optimal processing capacity. In contrast, CryptoStream, which relies on CKKS

homomorphic encryption, exceeds the latency budget significantly (312 ± 18 ms) despite

consuming roughly four times more CPU resources, illustrating the practical limitations

of full cryptographic computation in high-rate streaming settings. Flink-SGX meets the

latency target (192 ± 9 ms) but exhibits operational fragility: during traffic bursts, enclave

memory constraints trigger job failures in 3.1% of runs, undermining reliability in

production environments. Meanwhile, Flink-Plain and StaticBatch achieve higher raw

throughput (up to 95k events/sec) but provide no data confidentiality or adaptive resource

control, making them unsuitable for regulated financial applications where privacy and

auditability are mandatory.

Figure 2. Performance comparison (mean ± std, n = 5).

Statistical testing (two-sample t-test, α = 0.01) confirms that our method's latency is

significantly lower than CryptoStream (p < 0.001) and exhibits notably better stability than

Flink-SGX (p = 0.003). Throughput is also significantly higher than all secure baselines (p

< 0.001), with negligible variance across runs (n = 5).

The performance gains arise from two synergistic design choices. First, LSA protocol

employs a reduced-modulus Paillier variant that cuts per-operation encryption time by

approximately 60% compared to standard implementations, striking a favorable balance

between security strength and computational cost. Second, the adaptive batching

mechanism dynamically adjusts micro-batch sizes based on real-time queue depth and

predicted load, preventing the formation of oversized batches during traffic spikes, a

common cause of tail latency in fixed-interval systems. Unlike purely reactive approaches

(e.g., scaling only after CPU saturation), our controller uses short-term forecasts to

anticipate demand shifts, enabling smoother resource allocation. This proactive

adaptation avoids both underutilization during idle periods and congestion collapse

during bursts, which explains the consistent latency and high throughput observed even

under highly variable workloads.

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 204

4.3. Ablation Study

To validate the contribution of each proposed module, we performed ablation

experiments by disabling components individually: (1) w/o LSA, where secure

aggregation is replaced with plaintext processing; (2) w/o Adaptive Batching, using fixed

100-ms micro-batches; and (3) w/o Predictor, relying solely on reactive autoscaling. The

results are summarized in Table 1.

Table 1. Ablation Study (p99 latency in ms, throughput in k events/sec, n=5).

Variant Latency (ms) Throughput (k/s) Compliance

Full system 178 ± 6 89 ± 1.2 100%

w/o LSA 165 ± 5 92 ± 1.0 0%

w/o Adaptive

Batching
241 ± 11* 76 ± 2.1* 100%

w/o Predictor 185 ± 7 84 ± 1.5 100%

* p<0.001 vs. full system (two-sample t-test, α=0.01).

Removing LSA yields a modest latency reduction and slightly higher throughput but

completely forfeits data confidentiality, rendering the system non-compliant with

financial privacy requirements. This confirms that lightweight cryptography, while not

free, is indispensable for regulatory adherence without sacrificing practical performance.

Disabling adaptive batching leads to a significant latency increase (241 ± 11 ms) and a 14%

throughput drop, as fixed batches cannot adapt to bursty traffic, causing backpressure

during peaks and underutilization during lulls. This highlights the mechanism's critical

role in maintaining SLOs under real-world load variability. Finally, removing the

predictor results in only a minor latency penalty but increases CPU utilization by 22% and

triggers 4.7% more scaling actions, revealing that reactive scaling alone lacks foresight,

leading to oscillatory resource allocation and operational instability. Together, these

findings demonstrate that each component addresses a distinct yet essential dimension,

compliance, responsiveness, and efficiency, and their integration is key to achieving

robust, production-ready performance in regulated streaming environments.

4.4. Convergence and Robustness

Figure 3 shows the training dynamics of the LSTM-based throughput forecaster over

100 epochs, reporting both training loss and validation MAPE (Mean Absolute Percentage

Error) across five independent runs (n = 5). The model converges rapidly, within

approximately 40 epochs, and stabilizes at a final validation MAPE of 4.2 ± 0.3%,

indicating high accuracy in predicting short-term (10-second) throughput trends. During

online deployment, the predicted and actual throughput exhibit a strong positive

correlation (Pearson r = 0.93, p < 0.001), which directly translates into timely and precise

scaling decisions. This predictive fidelity is crucial: it allows the system to proactively

allocate resources before congestion occurs, rather than reacting after latency has already

degraded.

Figure 3. Forecaster convergence (mean ± std, n = 5).

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 205

To evaluate generalization beyond the original financial clearinghouse data, we

conducted robustness tests on two external workloads: a synthetic SWIFT-like payment

stream comprising 10 million messages generated using IBM's FinSim toolkit, and the

IEEE-CIS fraud detection dataset, reformatted into a continuous event stream with

realistic inter-arrival times. In both cases, the system maintained end-to-end p99 latency

below 195 ms and achieved 100% compliance completeness, with throughput dropping

by less than 8% relative to the primary dataset. This demonstrates that neither the

adaptive batching logic nor the secure aggregation protocol is overly tuned to a specific

institution's traffic pattern; instead, the design principles generalize across message

schemas, transaction volumes, and risk profiles.

We further tested the integrity of the compliance infrastructure by deliberately

injecting malformed provenance metadata into 5% of processed events. The Compliance

Logger successfully detected and flagged 99.6% of these anomalies, while preserving an

immutable, verifiable audit trail for all valid outputs. No false negatives were observed in

critical fields, confirming the logger's reliability under adversarial or faulty input

conditions.

Collectively, these results confirm that the proposed architecture is not only accurate

and efficient in its native environment but also resilient, portable, and trustworthy across

diverse operational contexts, key requirements for deployment in regulated, multi-

institutional financial ecosystems.

5. Conclusion

This study demonstrates that it is feasible to achieve low-latency, high-throughput

stream processing in regulated financial environments without compromising data

confidentiality or auditability. The core result is a co-designed system that integrates LSA,

adaptive micro-batching, and predictive autoscaling into a unified Flink-based pipeline.

Empirical evaluation on a real-world dataset of 128.5 million payment transactions shows

the system consistently meets a 200-ms p99 latency SLO at a sustained throughput of 89k

± 1.2k events/sec. Compared to secure baselines, our system delivers significantly lower

latency (e.g., 178 ms vs. 312 ms for CryptoStream) while maintaining full compliance with

privacy and provenance requirements. Ablation studies confirm that each component

contributes meaningfully: LSA enables encryption with acceptable overhead; adaptive

batching mitigates burst-induced tail latency (preventing an increase to 241 ms); and the

LSTM-based forecaster reduces scaling churn and improves resource efficiency.

The approach is practical and deployable within current infrastructure constraints. It

uses standard hardware, requires no trusted execution environments, and operates under

realistic network conditions. Compliance completeness remains at 100% even under

adversarial metadata injection (99.6% anomaly detection rate), confirming the robustness

of the audit mechanism.

Limitations exist. The model was trained and tested on data from a single European

clearinghouse; performance may vary across institutions with different transaction

patterns or regulatory regimes. The LSTM forecaster, while effective, adds modest

complexity and assumes short-term workload stationarity. Additionally, the current

implementation does not support cross-institutional joint processing, limiting

applicability in multi-party settings.

Future work should explore federated learning techniques to enable collaborative

model training without raw data sharing, extension of LSA to support richer aggregation

functions beyond sums, and evaluation on longer-duration datasets spanning multiple

market cycles to assess seasonal robustness. Integrating formal verification of compliance

logic could further strengthen trust in production deployments.

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

Vol. 3 (2026) 206

References

1. M. R. Dhanagari, "Scaling with MongoDB: Solutions for handling big data in real-time," Journal of Computer Science and

Technology Studies, vol. 6, no. 5, pp. 246-264, 2024.

2. H. Zhang, X. Jia, C. Chen, S. Bachani, J. K. Goel, M. Tarun, and E. C. Anyanwu, "Deep learning-based real-time data quality

assessment and anomaly detection for large-scale distributed data streams," International Journal of Medical and All Body Health

Research, vol. 6, no. 1, pp. 01-11, 2025.

3. S. D. Pasham, "Scalable Graph-Based Algorithms for Real-Time Analysis of Big Data in Social Networks," The Metascience, vol.

2, no. 1, pp. 92-129, 2024.

4. S. D. Pasham, "Privacy-preserving data sharing in big data analytics: A distributed computing approach," The Metascience, vol.

1, no. 1, pp. 149-184, 2023.

5. L. Theodorakopoulos, A. Karras, A. Theodoropoulou, and G. Kampiotis, "Benchmarking big data systems: Performance and

decision-making implications in emerging technologies," Technologies, vol. 12, no. 11, p. 217, 2024. doi:

10.3390/technologies12110217

6. J. I. Akerele, A. Uzoka, P. U. Ojukwu, and O. J. Olamijuwon, "Data management solutions for real-time analytics in retail cloud

environments," Engineering Science & Technology Journal, vol. 5, no. 11, pp. 3180-3192, 2024.

7. X. Sun, Y. He, D. Wu, and J. Z. Huang, "Survey of distributed computing frameworks for supporting big data analysis," Big

Data Mining and Analytics, vol. 6, no. 2, pp. 154-169, 2023. doi: 10.26599/bdma.2022.9020014

8. A. Hammad, and R. Abu-Zaid, "Applications of AI in decentralized computing systems: harnessing artificial intelligence for

enhanced scalability, efficiency, and autonomous decision-making in distributed architectures," Applied Research in Artificial

Intelligence and Cloud Computing, vol. 7, no. 6, pp. 161-187, 2024.

9. J. Zhu, T. Xu, Y. Zhang, and Z. Fan, "Scalable edge computing framework for real-time data processing in fintech applications,"

International Journal of Advance in Applied Science Research, vol. 3, pp. 85-92, 2024.

10. S. A. Ionescu, and V. Diaconita, "Transforming financial decision-making: the interplay of AI, cloud computing and advanced

data management technologies," International Journal of Computers Communications & Control, vol. 18, no. 6, 2023.

11. D. Mhlanga, "The role of big data in financial technology toward financial inclusion," Frontiers in big Data, vol. 7, p. 1184444,

2024. doi: 10.3389/fdata.2024.1184444

12. T. Saba, K. Haseeb, A. Rehman, and G. Jeon, "Blockchain-enabled intelligent iot protocol for high-performance and secured big

financial data transaction," IEEE Transactions on Computational Social Systems, vol. 11, no. 2, pp. 1667-1674, 2023. doi:

10.1109/tcss.2023.3268592

13. J. K. R. Burugulla, "The Future of Digital Financial Security: Integrating AI, Cloud, and Big Data for Fraud Prevention and Real

Time Transaction Monitoring in Payment Systems," MSW Management Journal, vol. 34, no. 2, pp. 711-730, 2024.

14. A. K. Vishwakarma, S. Chaurasia, K. Kumar, Y. N. Singh, and R. Chaurasia, "Internet of things technology, research, and

challenges: a survey," Multimedia Tools and Applications, vol. 84, no. 11, pp. 8455-8490, 2025. doi: 10.1007/s11042-024-19278-6

15. F. Liu, "Improve the Bi-LSTM Model of University Financial Information Management Platform Construction," Journal of

Electrical Systems, vol. 20, no. 1, 2024.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)

and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s)

disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or

products mentioned in the content.

	1. Introduction
	2. Related Works
	3. Methodology
	3.1. System Architecture Overview
	3.2. Adaptive Batching Mechanism
	3.3. Lightweight Secure Aggregation (LSA)
	3.4. Predictive Resource Scheduler
	3.5. Data and Reproducibility Details

	4. Results and Analysis
	4.1. Experimental Setup
	4.2. Performance Comparison
	4.3. Ablation Study
	4.4. Convergence and Robustness

	5. Conclusion
	References

