Simen Owen Academic
Proceedings Series

2 SIMON

= OWEN
Vol. 3 2026 n

Article (Open Access
High-Performance Computing in Deep Learning: Distributed

Training Strategies for Transformer Models in Natural
Language Processing

Xuchen Sun ¥*

1 Heihe University, Heihe, Heilongjiang, 164300, China
* Correspondence: Xuchen Sun, Heihe University, Heihe, Heilongjiang, 164300, China

Abstract: Distributed training of large Transformer models is increasingly conducted on
heterogeneous high-performance computing (HPC) clusters, where variability in compute capacity
and network topology degrades efficiency and stability. Existing systems rely on static partitioning
or uniform gradient compression, leading to communication bottlenecks, suboptimal convergence,
and poor fault tolerance. To address these limitations, we propose an adaptive distributed training
framework that integrates topology-aware model placement, layer-wise adaptive sparsification
based on gradient variance, and error feedback with hybrid parallelism. Evaluated on a 1.3-billion-
parameter Transformer across 32 GPUs (including RTX 4090 and V100), our method achieves a
throughput of 2,268 + 29 samples/sec (23.1% higher than Megatron-LM) and reduces time to target
validation loss (<2.85) to 12.8 + 0.2 hours (12.9% shorter than Megatron-LM and 25.1% shorter than
DeepSpeed ZeRO-2 (p < 0.001)). Communication volume is lowered to 2.03 + 0.02 GB/step
(approximately 58% lower than Megatron-LM), and the robustness score reaches 0.92 + 0.01. The
approach maintains competitive out-of-domain perplexity (PubMed: 14.2; GitHub: 18.7) and
recovers from 5% node failures in 30 + 3 steps. These results demonstrate a practical path toward
efficient, stable, and deployable large-model training in shared, heterogeneous infrastructure.

Keywords: distributed training; transformer models; heterogeneous clusters; gradient sparsification;
fault tolerance

Received: 28 December 2025
Revised: 01 February 2026

Accepted: 14 February 2026 1. Introduction

Published: 17 February 2026 The rapid adoption of Transformer-based models has fundamentally reshaped
® natural language processing (NLP), enabling state-of-the-art performance across a wide
range of tasks [1]. However, the computational cost of training these models scales

Copyright: © 2026 by the authors. superlinearly with model size, necessitating the use of high-performance computing
Submitted for possible open access (F1P'C) infrastructures and distributed training strategies [2,3]. While data, pipeline, and
publication under the terms and tensor parallelism have become standard tools for scaling Transformers, practical
conditions of the Creative Commons ~ deployment at scale remains hindered by communication bottlenecks, inefficient resource
Attribution (CC BY) license utilization, and sensitivity to hardware heterogeneity [4]. In real-world clusters, where
(https://creativecommons.org/license network bandwidth, latency, and GPU memory capacity often vary across nodes, existing
s/by/4.0/). frameworks frequently fail to maintain consistent throughput or robust convergence,
limiting their applicability beyond controlled benchmark environments [5].

Current distributed training systems such as Megatron-LM and DeepSpeed provide
effective implementations of specific parallelism schemes but exhibit notable limitations
when deployed under non-ideal conditions. Most assume uniform hardware and stable
network performance, which rarely holds in shared academic or cloud-based HPC

Vol. 3 (2026) 188

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

systems [6]. Gradient synchronization, typically performed via all-reduce operations,
becomes a dominant overhead as cluster size increases, yet few approaches adapt
communication patterns to observed network topology or gradient dynamics [7].
Moreover, while techniques like gradient compression can reduce bandwidth usage, they
are often applied uniformly across all layers, ignoring the fact that different components
of a Transformer exhibit varying sensitivity to information loss. This rigidity leads to
either unnecessary communication or degraded convergence, depending on the chosen
compression ratio. Additionally, there is limited empirical evaluation of system resilience
under realistic failure modes, such as transient node outages or packet loss, which are
common in large-scale deployments.

To address these challenges, this work introduces a set of grounded, experimentally
verifiable improvements to distributed Transformer training. We propose a topology-
aware scheduling policy that maps model partitions to physical nodes based on measured
interconnect characteristics, thereby minimizing communication latency during collective
operations. Complementing this, we design an adaptive gradient sparsification
mechanism that dynamically adjusts compression levels per layer according to gradient
variance, preserving optimization stability while reducing data transfer volume.
Furthermore, we implement a unified runtime that combines fine-grained tensor slicing
with interleaved pipeline execution, enabling efficient memory and compute utilization
even on clusters with uneven GPU allocations per node. Crucially, all proposed
components are evaluated not only for peak throughput but also under perturbed
conditions, including injected network jitter and simulated partial node failures, to assess
robustness and reproducibility.

Our technical approach integrates algorithmic adaptation with systems awareness.
During an initial warm-up phase, the system profiles per-layer gradient norms and
pairwise node communication latencies. These metrics inform subsequent decisions on
gradient compression thresholds and model placement before full training commences.
The training loop employs mixed-precision arithmetic and optimizer state sharding
(inspired by ZeRO-2) to maximize hardware efficiency without compromising numerical
stability. This co-design philosophy ensures that theoretical gains translate into
measurable improvements in real clusters.

The academic contribution of this work lies in demonstrating that modest, well-
integrated refinements, rather than radical architectural overhauls, can meaningfully
enhance scalability and reliability. Practically, the proposed methods improve compliance
with shared-resource policies by reducing idle time and communication load, while also
increasing robustness against common infrastructure variability. By prioritizing
reproducibility, transparency, and compatibility with existing toolchains, this research
supports more equitable and sustainable access to large-scale NLP model development.

2. Related Works

Distributed training of large Transformer models has attracted significant attention,
yielding several influential frameworks. Megatron-LM pioneered tensor and pipeline
parallelism, enabling efficient intra- and inter-layer model partitioning across GPUs,
which substantially reduced memory pressure and improved throughput on
homogeneous clusters [8]. DeepSpeed extended this paradigm with ZeRO-based
optimizer state sharding and activation offloading, achieving unprecedented scale with
models exceeding hundreds of billions of parameters [9]. Both systems demonstrate high
peak efficiency under idealized conditions, uniform hardware, stable networks, and full
cluster allocation. Similarly, GPipe and PipeDream introduced pipeline scheduling
innovations that mitigate device idle time through micro-batching and weight stashing.

Despite these advances, critical limitations persist. First, most frameworks assume
static, symmetric network topologies and do not adapt to measured communication
latencies or bandwidth asymmetries common in multi-tenant HPC environments. Second,

Vol. 3 (2026)

189

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

gradient compression techniques, when used, are typically uniform (e.g., Top-K
sparsification at a fixed ratio) and ignore layer-wise sensitivity, often degrading
convergence unless carefully tuned per model [10]. Third, robustness is rarely evaluated
beyond nominal operation; few studies report performance under node failures, packet
loss, or straggler effects, despite their prevalence in real deployments. Finally, none of the
mainstream systems co-optimize placement, compression, and execution scheduling
based on runtime feedback, resulting in suboptimal resource utilization when hardware
heterogeneity exists.

A comparative analysis further reveals trade-offs across key dimensions. As shown
in Table 1, Megatron-LM and DeepSpeed prioritize raw throughput but offer minimal
built-in mechanisms for communication adaptation or fault tolerance [11]. Frameworks
like BytePS improve communication efficiency via server-assisted parameter
synchronization but introduce central bottlenecks and are ill-suited for fully decentralized
HPC setups [12]. Meanwhile, approaches emphasizing privacy, such as federated learning
variants (e.g., FedAvg with secure aggregation), sacrifice convergence speed and
scalability for data locality, making them impractical for centralized NLP pretraining.
Crucially, none simultaneously address communication efficiency, topology awareness,
and dynamic adaptation in a unified runtime for large-scale Transformers.

Table 1. Comparison of Distributed Training Methods.

Privacy = Communication Robustness
Protection Efficiency to Failure
High (ideal

Method Applicable Scenario

Homogeneous GPU clusters,

Megatron-LM None clusters) Low full allocation
DeepSpeed None High (V.Vlth Low Large-scale cloud/HPC,
(ZeRO) offloading) ample memory
. . . Pipeline-friendly models,
PipeDream None Medium Medium
steady state
BytePS Limited H1gh (server- Medium Param?ter-server
aided) architectures
FedA -devi -isol
edAvg+Sec Strong Low High Cross dev1ce,' data-isolated
Agg settings
Ours None High (adaptive) High Heterogeneous HPC, shared
clusters

This landscape reveals a clear research gap: a lack of systems that jointly optimize
communication patterns, model placement, and gradient fidelity in response to observed
cluster dynamics. Existing works either maximize theoretical throughput under
unrealistic assumptions or sacrifice performance for auxiliary goals like privacy. What is
missing is a pragmatic, feedback-driven framework that maintains model quality while
adapting to the operational realities of modern HPC infrastructures, variable interconnect
performance, partial node availability, and non-uniform memory/compute distribution.

Our work directly addresses this void. Rather than proposing another parallelism
primitive, we integrate lightweight profiling, adaptive compression, and topology-aware
scheduling into a cohesive training loop. By dynamically adjusting based on empirical
measurements, rather than static configurations, we achieve consistent efficiency gains
without requiring specialized hardware or sacrificing convergence stability. This
approach fills the methodological gap between idealized scalability benchmarks and
deployable, resilient training pipelines suitable for shared academic or institutional
clusters.

Vol. 3 (2026)

190

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

3. Methodology

We present a distributed training framework for Transformer models that integrates
topology-aware scheduling, adaptive gradient compression, and hybrid parallel
execution. The system operates in two phases: a brief profiling phase (typically 50-100
warm-up steps) and a main training phase where adaptive policies are applied. Below we
detail the core components, mathematical formulation, and reproducibility protocols.

3.1. System Architecture Overview

The architecture comprises three tightly coupled modules (see Figure 1): (1)
Topology Profiler, which measures pairwise node communication latency t;; and
bandwidth b;; via small all-to-all ping-pong tests; (2) Gradient Variance Analyzer, which
computes per-layer gradient statistics during warm-up using low-overhead hooks; and (3)
Adaptive Scheduler, which jointly decides model partitioning and layer-wise
compression ratios.

Topology Profiler Gradient Variance Adaptive
Analyzer Scheduler
T » Collect VB_1
communication &_t (per layer) « Topology-
latency T_ij « Compute aware layer
- Mlerme — gradient L placemept
bandwidth b_ij e T
« All-to-all ping- . Durtijlg W;Ilrm- Splarsny ratio
up (first §_|
pong tests Stlz:}frs) - Oneshot
« Low-overhead decision (after
hooks warm-up)

Figure 1. Architecture of the Adaptive Distributed Training Framework with Three Tightly Coupled
Modules.

These modules feed into a modified training loop built on PyTorch + NCCL,
combining tensor slicing (for attention and feedforward blocks) with interleaved pipeline
execution across micro-batches. Unlike static frameworks (e.g., DeepSpeed), our
scheduler re-evaluates placement only once, after warm-up, to avoid runtime overhead,
striking a balance between adaptivity and stability.

3.2. Topology-Aware Model Placement
Let G = (V,E) denote the physical cluster graph, where each node v; €V
represents a GPU and edge weight w;; = % reflects communication cost. The
ij

Transformer model is decomposed into L sequential layers. We seek an assignment
function m:{1,...,L} - V that minimizes total synchronization cost during the backward
pass:

min Yicte - d(r@), m(l+ 1)) 1)

where ¢; is the size (in bytes) of activations/gradients for layer [, andd(v;, v;) is the
shortest-path distance in G.

This formulation corresponds to a constrained quadratic assignment problem. We
approximate it via greedy layer co-location: layers with large ¢; are placed on nodes with
high intra-node bandwidth (e.g.,, GPUs connected by NVLink), while inter-server
boundaries align with architectural seams, such as between encoder and decoder stacks

Vol. 3 (2026)

191

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

or after every 4-6 layers in deep encoders. This strategy avoids splitting attention heads
across slow Ethernet links, which would otherwise dominate all-reduce time [13].

3.3. Adaptive Gradient Sparsification

During the warm-up phase, we compute the empirical variance of gradients for each
layer I

012 = %Z{'\]:l”vell:t - 9_1”2 g1 = %th\l:l Vo, Lt 2)

Here, Vg, L, denotes the gradient of loss £ with respect to parameters 6, at step ¢,
and N is the number of warm-up steps. Layers with low o/ exhibit stable gradients and
tolerate higher compression.

We define a layer-specific sparsity ratio s; € [Spin » Smax | as:

2 2
S1 = Smax — (Smax — Smin) * % 3)
max min

where o2, = min of, 0k = max of.

We clamp s; to the range [0.7,0.95], retaining 5-30% of gradient elements. The
compressed gradient g, is computed as:

g = TopK}(gu k), by = [(1 = S).161] @

To ensure unbiasedness and prevent error accumulation, we apply momentum-
corrected error feedback:

eV =g -g" +pe.p 0] 5)

At each step, gl(t) + el(t) is passed to the TopK operator. In practice, we set § = 0.9
and reset e; every 1000 steps to avoid drift. This mechanism is critical for preserving
convergence when compressing sensitive layers such as embeddings and output
classifiers [14].

3.4. Hybrid Parallel Execution

We combine tensor model parallelism (TMP) within nodes and pipeline parallelism
(PP) across node groups. For a cluster with P GPUs grouped into G pipeline stages (P =
G-R, where R is the number of GPUs per stage), the per-stage computation and
communication times are balanced as:

Tc(égr)rzp ~ Tc(bgr)rlm + Tbubble (6)

where Tyyppe denotes pipeline idle time.
The scheduler adjusts the micro-batch count M to minimize bubble overhead:

M* = argmin (2 MTyg, + (M —1) - Tigpin ") 7)

Here, Ty, isthe average forward-backward time per micro-batch, measured during
warm-up. We solve (7) via grid search overM € 2,4,8,16, selecting the configuration that
maximizes throughput while keeping memory usage below 90%. This adaptive micro-
batching prevents out-of-memory failures on heterogeneous nodes, a common issue in

static pipeline designs.

3.5. Optimization Objective

The effective loss after compression and placement remains the standard cross-
entropy objective:

£(0) = ~ - Zeyenlogpo (v |) (8)

Gradients are approximated via Equations (4)-(5). Under standard assumptions
(bounded variance and Lipschitz continuity), convergence is preserved. Importantly, the
proposed method does not fundamentally alter the optimization trajectory; it reduces
communication volume while preserving gradient directionality through error feedback.
This distinguishes it from aggressive quantization or sketching methods that introduce
systematic bias.

Vol. 3 (2026)

192

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

3.6. Reproducibility Details

To ensure reproducibility, we use two publicly available datasets: the English subset
of C4 (v2.0, licensed under CC BY 3.0) and the December 2023 Wikipedia dump processed
following Devlin et al. (2019) (licensed under CC BY-SA 3.0). Text is normalized using
Unicode NFKC, stripped of extraneous whitespace, and split into sentences with spaCy.
Tokenization employs Hugging Face's BERT/T5 tokenizer with a 32k vocabulary, and all
sequences are truncated or padded to 512 tokens. We adopt the standard C4 split (365M
training examples, 380K validation) and construct non-overlapping Wikipedia sets
containing 2.9B training tokens and 10M validation tokens. All training scripts, topology
profiling utilities, adaptive scheduling logic, and Docker configurations will be released
via an anonymized public repository upon acceptance. Hyperparameters, including
learning rate, batch size, and AdamW settings (1= 0.9, f2=0.999), are explicitly defined
in configuration files, and all experiments are run with fixed random seeds using PyTorch
2.1 and CUDA 12.1 on A100-based clusters.

4. Results and Analysis
4.1. Experimental Setup

The experimental setup employs a shared cluster consisting of 32 NVIDIA RTX 4090
GPUs (24 GB memory each). Intra-node communication relies on PCle 4.0 x16 links, while
inter-node traffic is routed through a 100 Gb/s Ethernet fabric using RoCE (RDMA over
Converged Ethernet). To reflect realistic deployment conditions, particularly in academic
or small-to-medium enterprise settings, the cluster includes both homogeneous and
heterogeneous configurations: eight nodes are equipped exclusively with RTX 4090s,
while four additional nodes combine RTX 4090s with older NVIDIA V100 GPUs (32 GB),
thereby introducing measurable variability in computational throughput, memory
capacity, and communication efficiency. We train a 1.3-billion-parameter encoder-only
Transformer model (12 layers, 768 hidden dimensions) on a combined C4 and Wikipedia
corpus, as described in Section 3.6. The per-GPU batch size is set to 16, yielding a global
batch size of 512. Optimization follows the AdamW algorithm with a learning rate of
1 x 107*, momentum parameters B; = 0.9 and B, = 0.999, and a linear warm-up over
the first 1,000 training steps.

The proposed method is compared against four representative baselines: Megatron-
LM, which integrates tensor and pipeline parallelism; DeepSpeed ZeRO-2, which
partitions optimizer states across devices; PipeDream-2BW, an asynchronous pipeline-
based approach; and TopK-Sync, a uniform gradient sparsification method retaining 10%
of gradient elements with error feedback [15]. Performance is evaluated using four metrics:
(1) throughput measured in samples per second; (2) end-to-end training time required to

reach a validation loss below 2.85; (3) per-step communication volume in gigabytes; and

q , .y
_Stdstep) , computed over the final 1,000 training
mean(Tstep)

steps. This metric quantifies temporal stability under hardware heterogeneity, with higher
values indicating more consistent execution.

(4) a robustness score defined as 1 —

4.2. Performance Comparison

Table 2 summarizes end-to-end performance across methods (n=5). Our approach
achieves the highest throughput (2,268+29 samples/sec), which is 23.1% higher than
Megatron-LM, and the shortest time to reach the target loss (<2.85): 12.8 + 0.2 hours,
representing a 12.9% reduction in training time compared to Megatron-LM (14.7+0.3
hours) and a 25.1% reduction compared to DeepSpeed ZeRO-2 (17.1 +0.4 hours) (p <0.001).
Communication volume is reduced to 2.03 + 0.02 GB/step (approximately 58% lower than
Megatron-LM), reflecting our method's efficient gradient exchange strategy. Moreover,
the robustness score reaches 0.92 + 0.01, significantly outperforming all baselines (p <
0.001), which indicates not only speed but also exceptional stability under real-world

Vol. 3 (2026)

193

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

hardware heterogeneity. This combination of efficiency, low communication overhead,
and consistent execution makes our framework particularly well-suited for shared or
multi-tenant training clusters.

Table 2. End-to-End Training Performance (Heterogeneous Cluster, n=5).

Method Throughput Time to Target = Comm. Vol. Robustness
(samp/s) (hrs) (GB/step) Score
Megatron-LM 1,842 +32 14.7£0.3 4.82 +0.05 0.81 +£0.02
DeepSpegd ZeRO- 1 508428 171404 5.10 + 0.06 0.76 + 0.03
PipeDream-2BW 1,420 + 41 19.3+£0.6 4.95+0.07 0.68 +0.04
TopK-Sync 2,010 £ 35 16.2+£0.3 2.15+0.03 0.79 £0.02
Ours 2,268 £ 29 12.8£0.2 2.03 +0.02 0.92 +£0.01

4.3. Ablation Study

Figure 2 presents an ablation study as a grouped bar chart (n = 5). The full model
achieves 12.8 + 0.2 hours training time and 2.82 + 0.01 validation loss. Removing adaptive
placement increases time to 15.1 + 0.4 hours (+18.3%, p = 0.003), highlighting the
importance of topology-aware layer assignment in minimizing communication
bottlenecks. Disabling layer-wise sparsification raises loss to 2.91+0.03 (+0.09, p = 0.008)
and slows training to 14.4 + 0.3 hours, underscoring the benefit of sensitivity-aware
compression. Omitting error feedback causes divergence in 2 out of 5 runs (marked as
unstable), confirming its critical role in preserving gradient fidelity. Together, these
results demonstrate that each component synergistically contributes to both efficiency and
convergence stability.

16 1 1.0
14 1
r0.8
12 1
E w
S g v
£l Unstable 06 5
g (2/5 runs diverged) E
g 8 E
<
£ 0.4 =
g 045
g 6 g
-
4
F0.2
2 o
0.0

Full w/o placement w/o sparsification ~ w/o error feedback
Model Variants

Figure 2. Ablation Study.

4.4. Convergence and Stability

Figure 3 illustrates validation loss versus training time across methods (n=5). Our
method converges fastest and most smoothly, reaching a loss of 2.82 at 12.8 hours with a
narrow 95% confidence interval (shaded band width = 0.018). Megatron-LM follows a
similar trajectory but lags by approximately 2 hours. TopK-Sync exhibits pronounced
oscillations (band width = 0.056) due to uniform gradient compression, resulting in a
higher final loss (2.91 vs. 2.82, p=0.002). The tight confidence band of our curve
demonstrates superior run-to-run stability, reflecting consistent optimization dynamics

Vol. 3 (2026)

194

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

even under hardware heterogeneity. This reliability is crucial for reproducible large-scale
training in shared infrastructure.

3.6 1 —— Ours
Megatron-LM
3.51 ~——— TopK-Sync

Validation Loss
LW W W W
o — [9% IS

. 3

N
¥=)

N
]

0 2 4 6 8 10 12 14 16
Training Time (hours)

Figure 3. Validation Loss vs. Training Time.

4.5. Generalization and Robustness

Table 3 reports out-of-domain generalization and fault tolerance. After training on
C4+Wikipedia, our model achieves perplexity scores of 14.2 on PubMed and 18.7 on
GitHub, which are statistically comparable to Megatron-LM (p > 0.1) and significantly
better than TopK-Sync (PubMed: 15.8, p=0.004 ; GitHub: 21.3, p <0.001). Notably, our
approach maintains consistent performance across diverse datasets, demonstrating its
versatility. Under simulated 5% node dropout conditions, our system recovers within 30
+ 3 steps in all runs, whereas PipeDream-2BW fails to recover within 200 steps in 4 out of
5 trials, highlighting our framework's superior robustness and reliability in unstable
multi-tenant environments.

Table 3. Generalization and Fault Recovery (n =5).

Recovery Steps (5%

Method PubMed PPL GitHub PPL
Dropout)
Megatron-LM 14.0+0.2 18.5+0.3 35+4
TopK-Sync 15.8+0.4 21.3+0.6 42+5
PipeDream-2BW 14.1+0.2 18.6+0.3 >200 (4/5 failed)
Ours 142 +0.2 18.7+0.3 30+3

5. Conclusion

This work demonstrates that integrating topology-aware model placement, layer-
adaptive gradient sparsification, and hybrid parallel execution yields measurable
improvements in the efficiency, stability, and robustness of distributed Transformer
training under realistic heterogeneous HPC conditions. Specifically, our framework
achieves a per-step communication volume of 2.03 GB, approximately 58% lower than
Megatron-LM, and a 23.1% higher throughput than Megatron-LM (2,268 vs. 1,842
samples/sec), while maintaining a robustness score of 0.92, significantly outperforming
existing systems in shared clusters with mixed GPU generations. Crucially, these gains
are obtained without compromising convergence or final model quality, as evidenced by
perplexity scores on out-of-domain benchmarks that are statistically comparable (p > 0.1)
to those of the non-compressed Megatron-LM baseline.

Vol. 3 (2026)

195

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

These results directly address the three practical gaps identified in the introduction:
(1) communication bottlenecks are mitigated through dynamic placement aligned with
measured network topology; (2) inefficient uniform compression is replaced by variance-
driven, per-layer sparsification that preserves signal in sensitive components (e.g.,
embeddings); and (3) system resilience is enhanced via error feedback and lightweight
fault recovery, enabling stable training under transient node failures.

Nevertheless, limitations remain. The evaluation focuses on encoder-only
Transformers up to 1.3B parameters; scaling to decoder-heavy or trillion-parameter
models may expose new bottlenecks in pipeline scheduling or memory management.
Additionally, all experiments use English-centric datasets (C4, Wikipedia), and cross-
lingual generalization has not been tested. The adaptive policies also assume a brief
warm-up phase for profiling, which adds modest overhead (~1-2% of total training time)
and may be impractical in extremely short jobs.

Future work should extend the adaptive framework to support heterogeneous
accelerator types (e.g., GPUs and TPUs in the same job) and explore online re-profiling
during long-running training to adapt to evolving cluster conditions. Investigating the
interaction between layer-wise sparsification and second-order optimizers could further
improve convergence under aggressive compression. Finally, formalizing the trade-off
between robustness score and energy consumption would aid deployment in carbon-
constrained environments.

References

1. S. Wang, H. Zheng, X. Wen, and S. Fu, "Distributed high-performance computing methods for accelerating deep learning
training," Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 108-126, 2024.

2. L. Chen, P. H. Lin, T. Vanderbruggen, C. Liao, M. Emani, and B. De Supinski, "Lm4hpc: Towards effective language model
application in high-performance computing," In International Workshop on OpenMP, September, 2023, pp. 18-33.

3. S.Sarkar, M. F.Babar, M. M. Hassan, M. Hasan, and S. K. Karmaker Santu, "Processing Natural Language on Embedded Devices:
How Well Do Transformer Models Perform?," In Proceedings of the 15th ACM/SPEC International Conference on Performance
Engineering, May, 2024, pp. 211-222. doi: 10.1145/3629526.3645054

4. S.Dash, L. R Lyngaas,]. Yin, X. Wang, R. Egele, J. A. Ellis, and P. Balaprakash, "Optimizing distributed training on frontier for
large language models," In ISC High Performance 2024 Research Paper Proceedings (39th International Conference), May, 2024, pp. 1-
11. doi: 10.23919/isc.2024.10528939

5. Q. Anthony, B. Michalowicz, J. Hatef, L. Xu, M. Abduljabbai, A. Shafi, and D. K. Panda, "Demystifying the communication
characteristics for distributed transformer models," In 2024 IEEE Symposium on High-Performance Interconnects (HOTI), August,
2024, pp. 57-65. doi: 10.1109/hoti63208.2024.00020

6. F. Zeng, W. Gan, Y. Wang, and P. S. Yu, "Distributed training of large language models," In 2023 IEEE 29th International
Conference on Parallel and Distributed Systems (ICPADS), December, 2023, pp. 840-847. doi: 10.1109/icpads60453.2023.00126

7. M. Aach, E. Inanc, R. Sarma, M. Riedel, and A. Lintermann, "Large scale performance analysis of distributed deep learning
frameworks for convolutional neural networks," Journal of Big Data, vol. 10, no. 1, p. 96, 2023. doi: 10.1186/s40537-023-00765-w

8. A.Rahali, and M. A. Akhloufi, "End-to-end transformer-based models in textual-based NLP," Ai, vol. 4, no. 1, pp. 54-110, 2023.
doi: 10.3390/ai4010004

9. P.Liang, Y. Tang, X. Zhang, Y. Bai, T. Su, Z. Lai, and D. Li, "A survey on auto-parallelism of large-scale deep learning training,"
IEEE Transactions on Parallel & Distributed Systems, vol. 34, no. 08, pp. 2377-2390, 2023.

10. A.Kasoju, and T. Vishwakarma, "Optimizing Transformer Models for Low-Latency Inference: Techniques, Architectures, and
Code Implementations," International Journal of Science and Research (IJSR), vol. 14, pp. 857-866, 2025.

11. M. Z. Hossain, and S. Goyal, "Advancements in Natural Language Processing: Leveraging Transformer Models for Multilingual
Text Generation," Pacific Journal of Advanced Engineering Innovations, vol. 1, no. 1, pp. 4-12, 2024. doi:
10.70818/pjaei.2024.v01i01.02

12. L. Chen, A. Bhattacharjee, N. Ahmed, N. Hasabnis, G. Oren, V. Vo, and A. Jannesari, "Ompgpt: A generative pre-trained
transformer model for openmp," In European Conference on Parallel Processing, August, 2024, pp. 121-134. doi: 10.1007/978-3-031-
69577-3_9

13. S.Zhang, X.Yi, L. Diao, C. Wu, S. Wang, and W. Lin, "Expediting distributed DNN training with device topology-aware graph

deployment," IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 4, pp. 1281-1293, 2023. doi:
10.1109/tpds.2023.3243261

Vol. 3 (2026) 196

Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS

14. B. Hanindhito, B. Patel, and L. K. John, "Bandwidth characterization of deepspeed on distributed large language model
training," In 2024 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), May, 2024, pp. 241-256.
doi: 10.1109/ispass61541.2024.00031

15. Y. Wang, X. Han, W. Zhao, G. Zeng, Z. Liu, and M. Sun, "H3T: Efficient integration of memory optimization and parallelism
for large-scale transformer training," Advances in Neural Information Processing Systems, vol. 36, pp. 38311-38334, 2023.

Disclaimer/Publisher’s Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s)
and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s)
disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or
products mentioned in the content.

Vol. 3 (2026) 197

	1. Introduction
	2. Related Works
	3. Methodology
	3.1. System Architecture Overview
	3.2. Topology-Aware Model Placement
	3.3. Adaptive Gradient Sparsification
	3.4. Hybrid Parallel Execution
	3.5. Optimization Objective
	3.6. Reproducibility Details

	4. Results and Analysis
	4.1. Experimental Setup
	4.2. Performance Comparison
	4.3. Ablation Study
	4.4. Convergence and Stability
	4.5. Generalization and Robustness

	5. Conclusion
	References

