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Abstract: Distributed training of large Transformer models is increasingly conducted on 

heterogeneous high-performance computing (HPC) clusters, where variability in compute capacity 

and network topology degrades efficiency and stability. Existing systems rely on static partitioning 

or uniform gradient compression, leading to communication bottlenecks, suboptimal convergence, 

and poor fault tolerance. To address these limitations, we propose an adaptive distributed training 

framework that integrates topology-aware model placement, layer-wise adaptive sparsification 

based on gradient variance, and error feedback with hybrid parallelism. Evaluated on a 1.3-billion-

parameter Transformer across 32 GPUs (including RTX 4090 and V100), our method achieves a 

throughput of 2,268 ± 29 samples/sec (23.1% higher than Megatron-LM) and reduces time to target 

validation loss (<2.85) to 12.8 ± 0.2 hours (12.9% shorter than Megatron-LM and 25.1% shorter than 

DeepSpeed ZeRO-2 (p < 0.001)). Communication volume is lowered to 2.03 ± 0.02 GB/step 

(approximately 58% lower than Megatron-LM), and the robustness score reaches 0.92 ± 0.01. The 

approach maintains competitive out-of-domain perplexity (PubMed: 14.2; GitHub: 18.7) and 

recovers from 5% node failures in 30 ± 3 steps. These results demonstrate a practical path toward 

efficient, stable, and deployable large-model training in shared, heterogeneous infrastructure. 

Keywords: distributed training; transformer models; heterogeneous clusters; gradient sparsification; 

fault tolerance 

 

1. Introduction 

The rapid adoption of Transformer-based models has fundamentally reshaped 

natural language processing (NLP), enabling state-of-the-art performance across a wide 

range of tasks [1]. However, the computational cost of training these models scales 

superlinearly with model size, necessitating the use of high-performance computing 

(HPC) infrastructures and distributed training strategies [2,3]. While data, pipeline, and 

tensor parallelism have become standard tools for scaling Transformers, practical 

deployment at scale remains hindered by communication bottlenecks, inefficient resource 

utilization, and sensitivity to hardware heterogeneity [4]. In real-world clusters, where 

network bandwidth, latency, and GPU memory capacity often vary across nodes, existing 

frameworks frequently fail to maintain consistent throughput or robust convergence, 

limiting their applicability beyond controlled benchmark environments [5]. 

Current distributed training systems such as Megatron-LM and DeepSpeed provide 

effective implementations of specific parallelism schemes but exhibit notable limitations 

when deployed under non-ideal conditions. Most assume uniform hardware and stable 

network performance, which rarely holds in shared academic or cloud-based HPC 
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systems [6]. Gradient synchronization, typically performed via all-reduce operations, 

becomes a dominant overhead as cluster size increases, yet few approaches adapt 

communication patterns to observed network topology or gradient dynamics [7]. 

Moreover, while techniques like gradient compression can reduce bandwidth usage, they 

are often applied uniformly across all layers, ignoring the fact that different components 

of a Transformer exhibit varying sensitivity to information loss. This rigidity leads to 

either unnecessary communication or degraded convergence, depending on the chosen 

compression ratio. Additionally, there is limited empirical evaluation of system resilience 

under realistic failure modes, such as transient node outages or packet loss, which are 

common in large-scale deployments. 

To address these challenges, this work introduces a set of grounded, experimentally 

verifiable improvements to distributed Transformer training. We propose a topology-

aware scheduling policy that maps model partitions to physical nodes based on measured 

interconnect characteristics, thereby minimizing communication latency during collective 

operations. Complementing this, we design an adaptive gradient sparsification 

mechanism that dynamically adjusts compression levels per layer according to gradient 

variance, preserving optimization stability while reducing data transfer volume. 

Furthermore, we implement a unified runtime that combines fine-grained tensor slicing 

with interleaved pipeline execution, enabling efficient memory and compute utilization 

even on clusters with uneven GPU allocations per node. Crucially, all proposed 

components are evaluated not only for peak throughput but also under perturbed 

conditions, including injected network jitter and simulated partial node failures, to assess 

robustness and reproducibility. 

Our technical approach integrates algorithmic adaptation with systems awareness. 

During an initial warm-up phase, the system profiles per-layer gradient norms and 

pairwise node communication latencies. These metrics inform subsequent decisions on 

gradient compression thresholds and model placement before full training commences. 

The training loop employs mixed-precision arithmetic and optimizer state sharding 

(inspired by ZeRO-2) to maximize hardware efficiency without compromising numerical 

stability. This co-design philosophy ensures that theoretical gains translate into 

measurable improvements in real clusters. 

The academic contribution of this work lies in demonstrating that modest, well-

integrated refinements, rather than radical architectural overhauls, can meaningfully 

enhance scalability and reliability. Practically, the proposed methods improve compliance 

with shared-resource policies by reducing idle time and communication load, while also 

increasing robustness against common infrastructure variability. By prioritizing 

reproducibility, transparency, and compatibility with existing toolchains, this research 

supports more equitable and sustainable access to large-scale NLP model development. 

2. Related Works 

Distributed training of large Transformer models has attracted significant attention, 

yielding several influential frameworks. Megatron-LM pioneered tensor and pipeline 

parallelism, enabling efficient intra- and inter-layer model partitioning across GPUs, 

which substantially reduced memory pressure and improved throughput on 

homogeneous clusters [8]. DeepSpeed extended this paradigm with ZeRO-based 

optimizer state sharding and activation offloading, achieving unprecedented scale with 

models exceeding hundreds of billions of parameters [9]. Both systems demonstrate high 

peak efficiency under idealized conditions, uniform hardware, stable networks, and full 

cluster allocation. Similarly, GPipe and PipeDream introduced pipeline scheduling 

innovations that mitigate device idle time through micro-batching and weight stashing. 

Despite these advances, critical limitations persist. First, most frameworks assume 

static, symmetric network topologies and do not adapt to measured communication 

latencies or bandwidth asymmetries common in multi-tenant HPC environments. Second, 
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gradient compression techniques, when used, are typically uniform (e.g., Top-K 

sparsification at a fixed ratio) and ignore layer-wise sensitivity, often degrading 

convergence unless carefully tuned per model [10]. Third, robustness is rarely evaluated 

beyond nominal operation; few studies report performance under node failures, packet 

loss, or straggler effects, despite their prevalence in real deployments. Finally, none of the 

mainstream systems co-optimize placement, compression, and execution scheduling 

based on runtime feedback, resulting in suboptimal resource utilization when hardware 

heterogeneity exists. 

A comparative analysis further reveals trade-offs across key dimensions. As shown 

in Table 1, Megatron-LM and DeepSpeed prioritize raw throughput but offer minimal 

built-in mechanisms for communication adaptation or fault tolerance [11]. Frameworks 

like BytePS improve communication efficiency via server-assisted parameter 

synchronization but introduce central bottlenecks and are ill-suited for fully decentralized 

HPC setups [12]. Meanwhile, approaches emphasizing privacy, such as federated learning 

variants (e.g., FedAvg with secure aggregation), sacrifice convergence speed and 

scalability for data locality, making them impractical for centralized NLP pretraining. 

Crucially, none simultaneously address communication efficiency, topology awareness, 

and dynamic adaptation in a unified runtime for large-scale Transformers. 

Table 1. Comparison of Distributed Training Methods. 

Method 
Privacy 

Protection 

Communication 

Efficiency 

Robustness 

to Failure 
Applicable Scenario 

Megatron-LM None 
High (ideal 

clusters) 
Low 

Homogeneous GPU clusters, 

full allocation 

DeepSpeed 

(ZeRO) 
None 

High (with 

offloading) 
Low 

Large-scale cloud/HPC, 

ample memory 

PipeDream None Medium Medium 
Pipeline-friendly models, 

steady state 

BytePS Limited 
High (server-

aided) 
Medium 

Parameter-server 

architectures 

FedAvg+Sec

Agg 
Strong Low High 

Cross-device, data-isolated 

settings 

Ours None High (adaptive) High 
Heterogeneous HPC, shared 

clusters 

This landscape reveals a clear research gap: a lack of systems that jointly optimize 

communication patterns, model placement, and gradient fidelity in response to observed 

cluster dynamics. Existing works either maximize theoretical throughput under 

unrealistic assumptions or sacrifice performance for auxiliary goals like privacy. What is 

missing is a pragmatic, feedback-driven framework that maintains model quality while 

adapting to the operational realities of modern HPC infrastructures, variable interconnect 

performance, partial node availability, and non-uniform memory/compute distribution. 

Our work directly addresses this void. Rather than proposing another parallelism 

primitive, we integrate lightweight profiling, adaptive compression, and topology-aware 

scheduling into a cohesive training loop. By dynamically adjusting based on empirical 

measurements, rather than static configurations, we achieve consistent efficiency gains 

without requiring specialized hardware or sacrificing convergence stability. This 

approach fills the methodological gap between idealized scalability benchmarks and 

deployable, resilient training pipelines suitable for shared academic or institutional 

clusters. 
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3. Methodology 

We present a distributed training framework for Transformer models that integrates 

topology-aware scheduling, adaptive gradient compression, and hybrid parallel 

execution. The system operates in two phases: a brief profiling phase (typically 50-100 

warm-up steps) and a main training phase where adaptive policies are applied. Below we 

detail the core components, mathematical formulation, and reproducibility protocols. 

3.1. System Architecture Overview 

The architecture comprises three tightly coupled modules (see Figure 1): (1) 

Topology Profiler, which measures pairwise node communication latency 𝜏𝑖𝑗  and 

bandwidth 𝑏𝑖𝑗  via small all-to-all ping-pong tests; (2) Gradient Variance Analyzer, which 

computes per-layer gradient statistics during warm-up using low-overhead hooks; and (3) 

Adaptive Scheduler, which jointly decides model partitioning and layer-wise 

compression ratios. 

 

Figure 1. Architecture of the Adaptive Distributed Training Framework with Three Tightly Coupled 

Modules. 

These modules feed into a modified training loop built on PyTorch + NCCL, 

combining tensor slicing (for attention and feedforward blocks) with interleaved pipeline 

execution across micro-batches. Unlike static frameworks (e.g., DeepSpeed), our 

scheduler re-evaluates placement only once, after warm-up, to avoid runtime overhead, 

striking a balance between adaptivity and stability. 

3.2. Topology-Aware Model Placement 

Let 𝐺 = (𝑉, 𝐸)  denote the physical cluster graph, where each node 𝑣𝑖 ∈ 𝑉 

represents a GPU and edge weight 𝑤𝑖𝑗 =
1

𝑏𝑖𝑗
 reflects communication cost. The 

Transformer model is decomposed into 𝐿  sequential layers. We seek an assignment 

function 𝜋: {1, . . . , 𝐿} → 𝑉 that minimizes total synchronization cost during the backward 

pass: 

min
𝜋

∑ 𝑐𝑙
𝐿−1
𝑙=1 ⋅ 𝑑(𝜋(𝑙), 𝜋(𝑙 + 1))          (1) 

where 𝑐𝑙 is the size (in bytes) of activations/gradients for layer 𝑙, and𝑑(𝑣𝑖 , 𝑣𝑗) is the 

shortest-path distance in 𝐺. 

This formulation corresponds to a constrained quadratic assignment problem. We 

approximate it via greedy layer co-location: layers with large 𝑐𝑙 are placed on nodes with 

high intra-node bandwidth (e.g., GPUs connected by NVLink), while inter-server 

boundaries align with architectural seams, such as between encoder and decoder stacks 
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or after every 4-6 layers in deep encoders. This strategy avoids splitting attention heads 

across slow Ethernet links, which would otherwise dominate all-reduce time [13]. 

3.3. Adaptive Gradient Sparsification 

During the warm-up phase, we compute the empirical variance of gradients for each 

layer 𝑙: 

𝜎𝑙
2 =

1

𝑁
∑ ‖∇𝜃𝑙

ℒ𝑡 − 𝑔̄𝑙‖
𝑁
𝑡=1

2
, 𝑔̄𝑙 =

1

𝑁
∑ ∇𝜃𝑙

𝑁
𝑡=1 ℒ𝑡       (2) 

Here, ∇𝜃𝑙
ℒ𝑡 denotes the gradient of loss ℒ with respect to parameters 𝜃𝑙 at step 𝑡, 

and 𝑁 is the number of warm-up steps. Layers with low 𝜎𝑙
2 exhibit stable gradients and 

tolerate higher compression. 

We define a layer-specific sparsity ratio 𝑠𝑙 ∈ [𝑠min  , 𝑠max  ] as: 

𝑠𝑙 = 𝑠max  − (𝑠max  − 𝑠min  ) ⋅
𝜎𝑙

2−𝜎min  
2

𝜎max  
2 −𝜎min  

2         (3) 

where 𝜎min  
2 = min

𝑙
𝜎𝑙

2 , 𝜎max  
2 = max

𝑙
𝜎𝑙

2.  

We clamp 𝑠𝑙  to the range [0.7,0.95], retaining 5-30% of gradient elements. The 

compressed gradient 𝑔̃𝑙 is computed as: 

𝑔̃𝑙  =  𝑇𝑜𝑝𝐾}(𝑔𝑙 , 𝑘𝑙), 𝑘𝑙  = ⌈(1 − 𝑆𝑡). |𝜃𝑡|⌉        (4) 

To ensure unbiasedness and prevent error accumulation, we apply momentum-

corrected error feedback: 

𝑒𝑙
(𝑡+1)

= 𝑔𝑙
(𝑡)

− 𝑔̃𝑙
(𝑡)

+ 𝛽𝑒𝑙
(𝑡)

, 𝛽 ∈ [0,1]        (5) 

At each step, 𝑔𝑙
(𝑡)

+ 𝑒𝑙
(𝑡)

 is passed to the TopK operator. In practice, we set 𝛽 = 0.9 

and reset 𝑒𝑙  every 1000 steps to avoid drift. This mechanism is critical for preserving 

convergence when compressing sensitive layers such as embeddings and output 

classifiers [14]. 

3.4. Hybrid Parallel Execution 

We combine tensor model parallelism (TMP) within nodes and pipeline parallelism 

(PP) across node groups. For a cluster with 𝑃 GPUs grouped into 𝐺 pipeline stages (𝑃 =

𝐺 ⋅ 𝑅 , where 𝑅  is the number of GPUs per stage), the per-stage computation and 

communication times are balanced as: 

𝑇𝑐𝑜𝑚𝑝
(𝑔)

≈ 𝑇𝑐𝑜𝑚𝑚
(𝑔)

+ 𝑇𝑏𝑢𝑏𝑏𝑙𝑒           (6) 

where 𝑇𝑏𝑢𝑏𝑏𝑙𝑒  denotes pipeline idle time. 

The scheduler adjusts the micro-batch count 𝑀 to minimize bubble overhead: 

𝑀∗ = 𝑎𝑟𝑔 min
𝑀

(
𝐺

𝐿
⋅ 𝑀𝑇𝑠𝑡𝑒𝑝 + (𝑀 − 1) ⋅ 𝑇𝑐𝑜𝑚𝑚

𝑖𝑛𝑡𝑒𝑟−𝑠𝑡𝑎𝑔𝑒
)      (7) 

Here, 𝑇𝑠𝑡𝑒𝑝 is the average forward-backward time per micro-batch, measured during 

warm-up. We solve (7) via grid search over𝑀 ∈ 2,4,8,16, selecting the configuration that 

maximizes throughput while keeping memory usage below 90%. This adaptive micro-

batching prevents out-of-memory failures on heterogeneous nodes, a common issue in 

static pipeline designs. 

3.5. Optimization Objective 

The effective loss after compression and placement remains the standard cross-

entropy objective: 

ℒ(Θ) = −
1

|𝒟|
∑ log 𝑝Θ(𝑥,𝑦)∈𝒟 (𝑦 ∣ 𝑥)         (8) 

Gradients are approximated via Equations (4)-(5). Under standard assumptions 

(bounded variance and Lipschitz continuity), convergence is preserved. Importantly, the 

proposed method does not fundamentally alter the optimization trajectory; it reduces 

communication volume while preserving gradient directionality through error feedback. 

This distinguishes it from aggressive quantization or sketching methods that introduce 

systematic bias. 
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3.6. Reproducibility Details 

To ensure reproducibility, we use two publicly available datasets: the English subset 

of C4 (v2.0, licensed under CC BY 3.0) and the December 2023 Wikipedia dump processed 

following Devlin et al. (2019) (licensed under CC BY-SA 3.0). Text is normalized using 

Unicode NFKC, stripped of extraneous whitespace, and split into sentences with spaCy. 

Tokenization employs Hugging Face's BERT/T5 tokenizer with a 32k vocabulary, and all 

sequences are truncated or padded to 512 tokens. We adopt the standard C4 split (365M 

training examples, 380K validation) and construct non-overlapping Wikipedia sets 

containing 2.9B training tokens and 10M validation tokens. All training scripts, topology 

profiling utilities, adaptive scheduling logic, and Docker configurations will be released 

via an anonymized public repository upon acceptance. Hyperparameters, including 

learning rate, batch size, and AdamW settings (β1 = 0.9, β2 = 0.999), are explicitly defined 

in configuration files, and all experiments are run with fixed random seeds using PyTorch 

2.1 and CUDA 12.1 on A100-based clusters. 

4. Results and Analysis 

4.1. Experimental Setup 

The experimental setup employs a shared cluster consisting of 32 NVIDIA RTX 4090 

GPUs (24 GB memory each). Intra-node communication relies on PCIe 4.0 x16 links, while 

inter-node traffic is routed through a 100 Gb/s Ethernet fabric using RoCE (RDMA over 

Converged Ethernet). To reflect realistic deployment conditions, particularly in academic 

or small-to-medium enterprise settings, the cluster includes both homogeneous and 

heterogeneous configurations: eight nodes are equipped exclusively with RTX 4090s, 

while four additional nodes combine RTX 4090s with older NVIDIA V100 GPUs (32 GB), 

thereby introducing measurable variability in computational throughput, memory 

capacity, and communication efficiency. We train a 1.3-billion-parameter encoder-only 

Transformer model (12 layers, 768 hidden dimensions) on a combined C4 and Wikipedia 

corpus, as described in Section 3.6. The per-GPU batch size is set to 16, yielding a global 

batch size of 512. Optimization follows the AdamW algorithm with a learning rate of 

1 × 10−4, momentum parameters 𝛽1 = 0.9 and 𝛽2 = 0.999, and a linear warm-up over 

the first 1,000 training steps. 

The proposed method is compared against four representative baselines: Megatron-

LM, which integrates tensor and pipeline parallelism; DeepSpeed ZeRO-2, which 

partitions optimizer states across devices; PipeDream-2BW, an asynchronous pipeline-

based approach; and TopK-Sync, a uniform gradient sparsification method retaining 10% 

of gradient elements with error feedback [15]. Performance is evaluated using four metrics: 

(1) throughput measured in samples per second; (2) end-to-end training time required to 

reach a validation loss below 2.85; (3) per-step communication volume in gigabytes; and 

(4) a robustness score defined as 1 −
std(𝑇𝑠𝑡𝑒𝑝)

mean(𝑇𝑠𝑡𝑒𝑝)
, computed over the final 1,000 training 

steps. This metric quantifies temporal stability under hardware heterogeneity, with higher 

values indicating more consistent execution. 

4.2. Performance Comparison 

Table 2 summarizes end-to-end performance across methods (n=5). Our approach 

achieves the highest throughput (2,268±29 samples/sec), which is 23.1% higher than 

Megatron-LM, and the shortest time to reach the target loss (<2.85): 12.8 ± 0.2 hours, 

representing a 12.9% reduction in training time compared to Megatron-LM (14.7±0.3 

hours) and a 25.1% reduction compared to DeepSpeed ZeRO-2 (17.1 ± 0.4 hours) (p < 0.001). 

Communication volume is reduced to 2.03 ± 0.02 GB/step (approximately 58% lower than 

Megatron-LM), reflecting our method's efficient gradient exchange strategy. Moreover, 

the robustness score reaches 0.92 ± 0.01, significantly outperforming all baselines (p < 

0.001), which indicates not only speed but also exceptional stability under real-world 
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hardware heterogeneity. This combination of efficiency, low communication overhead, 

and consistent execution makes our framework particularly well‑suited for shared or 

multi‑tenant training clusters. 

Table 2. End-to-End Training Performance (Heterogeneous Cluster, n=5). 

Method 
Throughput 

(samp/s) 

Time to Target 

(hrs) 

Comm. Vol. 

(GB/step) 

Robustness 

Score 

Megatron-LM 1,842 ± 32 14.7 ± 0.3 4.82 ± 0.05 0.81 ± 0.02 

DeepSpeed ZeRO-

2 
1,598 ± 28 17.1 ± 0.4 5.10 ± 0.06 0.76 ± 0.03 

PipeDream-2BW 1,420 ± 41 19.3 ± 0.6 4.95 ± 0.07 0.68 ± 0.04 

TopK-Sync 2,010 ± 35 16.2 ± 0.3 2.15 ± 0.03 0.79 ± 0.02 

Ours 2,268 ± 29 12.8 ± 0.2 2.03 ± 0.02 0.92 ± 0.01 

4.3. Ablation Study 

Figure 2 presents an ablation study as a grouped bar chart (n = 5). The full model 

achieves 12.8 ± 0.2 hours training time and 2.82 ± 0.01 validation loss. Removing adaptive 

placement increases time to 15.1 ± 0.4 hours (+18.3%, p = 0.003), highlighting the 

importance of topology-aware layer assignment in minimizing communication 

bottlenecks. Disabling layer-wise sparsification raises loss to 2.91±0.03 (+0.09, p = 0.008) 

and slows training to 14.4 ± 0.3 hours, underscoring the benefit of sensitivity-aware 

compression. Omitting error feedback causes divergence in 2 out of 5 runs (marked as 

unstable), confirming its critical role in preserving gradient fidelity. Together, these 

results demonstrate that each component synergistically contributes to both efficiency and 

convergence stability. 

 

Figure 2. Ablation Study. 

4.4. Convergence and Stability 

Figure 3 illustrates validation loss versus training time across methods ( n=5 ). Our 

method converges fastest and most smoothly, reaching a loss of 2.82 at 12.8 hours with a 

narrow 95% confidence interval (shaded band width ≈ 0.018). Megatron-LM follows a 

similar trajectory but lags by approximately 2 hours. TopK-Sync exhibits pronounced 

oscillations (band width ≈ 0.056) due to uniform gradient compression, resulting in a 

higher final loss (2.91 vs. 2.82, p=0.002 ). The tight confidence band of our curve 

demonstrates superior run-to-run stability, reflecting consistent optimization dynamics 
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even under hardware heterogeneity. This reliability is crucial for reproducible large-scale 

training in shared infrastructure. 

 

Figure 3. Validation Loss vs. Training Time. 

4.5. Generalization and Robustness 

Table 3 reports out-of-domain generalization and fault tolerance. After training on 

C4+Wikipedia, our model achieves perplexity scores of 14.2 on PubMed and 18.7 on 

GitHub, which are statistically comparable to Megatron-LM (p﹥0.1 ) and significantly 

better than TopK-Sync (PubMed: 15.8, p=0.004 ; GitHub: 21.3, p﹤0.001 ). Notably, our 

approach maintains consistent performance across diverse datasets, demonstrating its 

versatility. Under simulated 5% node dropout conditions, our system recovers within 30 

± 3 steps in all runs, whereas PipeDream-2BW fails to recover within 200 steps in 4 out of 

5 trials, highlighting our framework's superior robustness and reliability in unstable 

multi-tenant environments. 

Table 3. Generalization and Fault Recovery (n = 5). 

Method PubMed PPL GitHub PPL 
Recovery Steps (5% 

Dropout) 

Megatron-LM 14.0 ± 0.2 18.5 ± 0.3 35 ± 4 

TopK-Sync 15.8 ± 0.4 21.3 ± 0.6 42 ± 5 

PipeDream-2BW 14.1 ± 0.2 18.6 ± 0.3 >200 (4/5 failed) 

Ours 14.2 ± 0.2 18.7 ± 0.3 30 ± 3 

5. Conclusion 

This work demonstrates that integrating topology-aware model placement, layer-

adaptive gradient sparsification, and hybrid parallel execution yields measurable 

improvements in the efficiency, stability, and robustness of distributed Transformer 

training under realistic heterogeneous HPC conditions. Specifically, our framework 

achieves a per-step communication volume of 2.03 GB, approximately 58% lower than 

Megatron-LM, and a 23.1% higher throughput than Megatron-LM (2,268 vs. 1,842 

samples/sec), while maintaining a robustness score of 0.92, significantly outperforming 

existing systems in shared clusters with mixed GPU generations. Crucially, these gains 

are obtained without compromising convergence or final model quality, as evidenced by 

perplexity scores on out-of-domain benchmarks that are statistically comparable (p > 0.1) 

to those of the non-compressed Megatron-LM baseline. 
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These results directly address the three practical gaps identified in the introduction: 

(1) communication bottlenecks are mitigated through dynamic placement aligned with 

measured network topology; (2) inefficient uniform compression is replaced by variance-

driven, per-layer sparsification that preserves signal in sensitive components (e.g., 

embeddings); and (3) system resilience is enhanced via error feedback and lightweight 

fault recovery, enabling stable training under transient node failures. 

Nevertheless, limitations remain. The evaluation focuses on encoder-only 

Transformers up to 1.3B parameters; scaling to decoder-heavy or trillion-parameter 

models may expose new bottlenecks in pipeline scheduling or memory management. 

Additionally, all experiments use English-centric datasets (C4, Wikipedia), and cross-

lingual generalization has not been tested. The adaptive policies also assume a brief 

warm-up phase for profiling, which adds modest overhead (~1-2% of total training time) 

and may be impractical in extremely short jobs. 

Future work should extend the adaptive framework to support heterogeneous 

accelerator types (e.g., GPUs and TPUs in the same job) and explore online re-profiling 

during long-running training to adapt to evolving cluster conditions. Investigating the 

interaction between layer-wise sparsification and second-order optimizers could further 

improve convergence under aggressive compression. Finally, formalizing the trade-off 

between robustness score and energy consumption would aid deployment in carbon-

constrained environments. 
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