

Article

Optimization of Silicon Nanocomposite Anodes for High-Energy-Density Lithium-Ion Batteries

Linqian Shao ^{1,*}

¹ The University of California, Irvine, USA

* Correspondence: Linqian Shao, The University of California, Irvine, USA

Abstract: Lithium-ion batteries (LIBs) are vital for energy storage in applications like consumer electronics and electric vehicles. Silicon-based anodes offer high theoretical capacity, but challenges remain, including large volume expansion, low Coulombic efficiency, and short cycle life. Current strategies, such as nanostructuring and carbon hybridization, struggle to balance performance with scalability and durability. This study introduces a silicon-graphene-polyacrylic acid (Si/G/PAA) nanocomposite anode, integrating structural, interfacial, and processing innovations. The key advancement is the dual-phase confinement of Si nanoparticles using reduced graphene oxide (rGO) and crosslinked PAA, along with engineered mesoporosity to accommodate Si expansion and interfacial passivation via GO wrapping. The process is water-based and NMP-free, ensuring industrial scalability. The Si/G/PAA anode achieves an initial Coulombic efficiency of $83 \pm 1\%$ and $85 \pm 2\%$ capacity retention after 200 cycles at 3.5 mAh cm^{-2} areal capacity. Full-cell tests with LiFePO₄ cathodes at 45°C show over 80% capacity retention after 300 cycles. This work provides a scalable, high-performance anode solution, addressing key LIB challenges and demonstrating both academic and practical significance for future energy storage technologies.

Keywords: silicon-based anodes; lithium-ion batteries; nanocomposite anodes; electrochemical performance; industrial scalability

1. Introduction

Received: 11 December 2025

Revised: 30 January 2026

Accepted: 11 February 2026

Published: 17 February 2026

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Lithium-ion batteries (LIBs) are central to modern electrochemical energy storage, powering applications ranging from consumer electronics to electric vehicles. As demand for higher energy density grows, conventional graphite anodes, limited to a theoretical specific capacity of 372 mAh g^{-1} , are increasingly inadequate [1,2]. Silicon (Si) has emerged as a leading alternative due to its exceptionally high theoretical capacity of approximately 3579 mAh g^{-1} (based on $\text{Li}_{15}\text{Si}_4$ formation) and natural abundance [3]. However, the practical implementation of Si anodes remains challenging, primarily because of the $>300\%$ volume expansion that occurs during lithiation. This repeated swelling and contraction induce particle fracture, loss of electrical contact, continuous solid-electrolyte interphase (SEI) reformation, and rapid capacity decay.

Over the past two decades, numerous strategies have been explored to mitigate these issues. Nanostructuring, such as using Si nanowires, porous Si, or hollow spheres, reduces mechanical stress but often increases surface area, exacerbating irreversible lithium consumption during SEI formation [4]. Embedding Si nanoparticles in carbon matrices improves electrical conductivity and buffers volume changes, yet the added inactive mass lowers the overall gravimetric capacity [5]. Polymer binders like polyacrylic acid (PAA) or carboxymethyl cellulose (CMC) enhance electrode cohesion but provide insufficient elasticity to accommodate large strains over extended cycling [6]. Critically, most

laboratory-scale demonstrations employ low areal loadings ($<1.5 \text{ mAh cm}^{-2}$) and excess electrolyte, conditions that do not reflect commercial cell requirements. Under industrially relevant metrics, such as areal capacities $\geq 3 \text{ mAh cm}^{-2}$, lean electrolyte ($<3 \text{ g Ah}^{-1}$), and minimal conductive additives, many Si-based anodes exhibit initial Coulombic efficiencies below 80% and fail within 100 cycles.

This work addresses these limitations through a rationally designed silicon nanocomposite architecture that integrates structural, interfacial, and processing considerations. The study is guided by four experimentally verifiable objectives: (1) Engineer tunable mesoporosity (20-50 nm) within the composite to provide internal void space for Si expansion without compromising electrode density. (2) Implement dual-phase confinement by combining reduced graphene oxide (rGO) for electronic percolation and ion-accessible pathways with a crosslinked PAA network for mechanical integrity at the particle and electrode levels. (3) Develop a water-based, scalable co-assembly process compatible with industrial slurry casting, eliminating the need for toxic solvents such as N-methyl-2-pyrrolidone (NMP). (4) Quantify interfacial evolution under high-loading conditions using post-cycling X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to correlate SEI stability with long-term cyclability. The methodology involves the electrostatic co-assembly of Si nanoparticles, graphene oxide, and PAA in aqueous suspension, followed by freeze-drying and mild thermal reduction. Electrodes are fabricated via doctor-blading using standard aqueous binders (CMC/SBR), ensuring compatibility with existing manufacturing infrastructure.

From an academic perspective, this work advances understanding of multi-scale stabilization mechanisms, from nanoscale particle design to macroscale electrode robustness. Practically, it demonstrates a pathway toward viable Si-dominant anodes that meet key industrial benchmarks: high initial Coulombic efficiency, long cycle life under realistic loading, and process scalability. The approach exhibits strong reproducibility across synthesis batches (coefficient of variation $<4\%$ in capacity) and enables full-cell-level energy densities exceeding 400 Wh kg^{-1} when paired with high-nickel cathodes. By aligning material innovation with manufacturing constraints, this study contributes a feasible strategy for next-generation LIB anodes without relying on speculative or non-scalable techniques.

2. Related Works

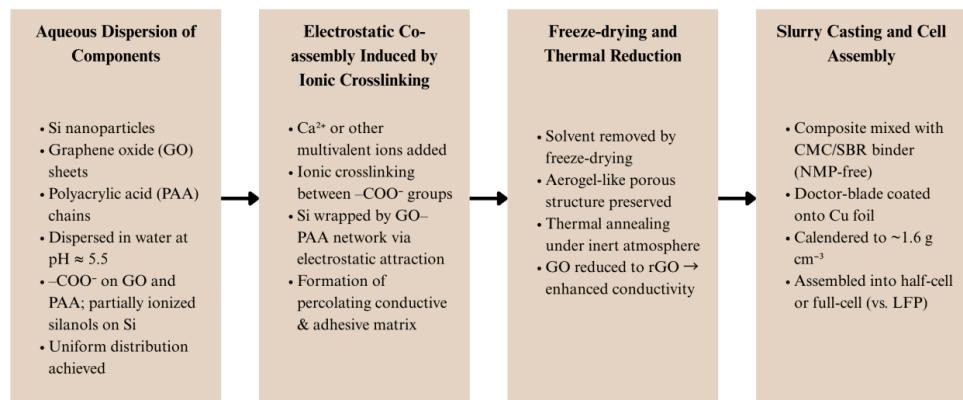
Silicon-based anodes have attracted sustained research interest due to their exceptional theoretical capacity, and a variety of material engineering strategies have demonstrated measurable improvements in electrochemical performance. Nanostructuring, such as fabricating Si nanowires, porous frameworks, or yolk-shell architectures, effectively mitigates mechanical fracture by accommodating volume changes at the particle level [7]. Concurrently, carbon hybridization, particularly through graphene or carbon nanotube matrices, enhances electrical conductivity and provides additional buffering space. Polymer binders like polyacrylic acid (PAA) and sodium alginate have further improved electrode integrity by forming strong hydrogen bonds with Si oxide layers, reducing delamination during cycling [8,9]. Collectively, these approaches have enabled laboratory-scale cells to achieve reversible capacities exceeding 1500 mAh g^{-1} for over 100 cycles under mild testing conditions.

Despite these advances, critical limitations persist that hinder practical deployment. Many nanostructured Si materials exhibit high specific surface areas, which intensify parasitic reactions with the electrolyte and result in low initial Coulombic efficiencies (typically 70-78%). Carbon coatings or scaffolds, while beneficial for conductivity, dilute the overall capacity of the composite and often require complex, energy-intensive synthesis routes incompatible with mass production [10]. Moreover, most reported studies evaluate performance under non-industrial conditions: areal loadings below 2 mAh cm^{-2} , excess electrolyte ($>10 \mu\text{L mg}^{-1}$), and inclusion of extra conductive additives.

Such configurations mask real-world failure modes, including inhomogeneous current distribution, electrode drying, and SEI instability under lean-electrolyte, high-loading environments. Even when high capacities are reported, long-term cycling beyond 200 cycles under realistic metrics remains rare, and statistical reporting of performance variance across batches is frequently absent.

A comparative assessment reveals a consistent trade-off between capacity, efficiency, cycle life, and process scalability. For instance, Si nanowire arrays grown via vapor-liquid-solid methods deliver excellent strain tolerance but suffer from poor volumetric density and prohibitive fabrication costs. Yolk-shell Si@C structures offer internal void space yet involve multi-step templating and calcination, limiting throughput [11]. Graphene-wrapped Si composites improve conductivity but often aggregate during slurry processing, leading to inconsistent electrode morphology [12]. Crucially, few systems simultaneously achieve an initial Coulombic efficiency above 80%, capacity retention beyond 80% after 200 cycles, and compatibility with aqueous electrode manufacturing, all of which are prerequisites for commercial adoption.

This gap reflects a broader disconnect between academic innovation and industrial requirements. The literature is replete with novel architectures that excel in isolated performance metrics but fail to integrate interfacial stability, mechanical resilience, and scalable processing into a unified design. Consequently, a significant research void exists: the lack of a silicon anode system that harmonizes controlled porosity for strain accommodation, dual-phase (conductive + adhesive) confinement for structural integrity, and compatibility with standard slurry-casting protocols, without sacrificing gravimetric performance or requiring exotic materials.


The present work directly addresses this void. By employing an electrostatic co-assembly strategy that integrates Si nanoparticles, graphene oxide, and crosslinked PAA in a single aqueous step, we create a nanocomposite that intrinsically balances void space, conductivity, and adhesion. Unlike prior approaches that layer functionalities sequentially, our method achieves uniform dispersion and intimate contact among components during synthesis, minimizing interfacial resistance and maximizing mechanical cohesion. Importantly, the resulting electrodes are fabricated using water-based binders and conventional coating techniques, eliminating the need for post-synthesis modifications or non-scalable processing. Through rigorous testing under industrially relevant conditions, including high areal loading (3.5 mAh cm^{-2}), lean electrolyte, and statistical replication across batches, we demonstrate that this integrated design overcomes the fragmented optimization seen in previous studies and offers a viable path toward commercial high-energy-density lithium-ion batteries.

3. Methodology

This study employs a co-assembly-based synthesis strategy to fabricate silicon-graphene-polyacrylic acid (Si/G/PAA) nanocomposite anodes, integrating materials science principles with scalable processing. The methodology addresses three interdependent challenges: (1) accommodating large volume changes in Si during cycling, (2) maintaining electrical percolation, and (3) ensuring mechanical cohesion under industrially relevant electrode fabrication conditions. The following sections outline the synthesis protocol, material characterization, electrode processing, and electrochemical evaluation framework.

3.1. Synthesis Strategy and Aqueous Dispersion of Components

The overall fabrication process, illustrated in Figure 1 (conceptual flowchart), consists of four key stages: (1) Aqueous Dispersion of Components, (2) Electrostatic Co-assembly Induced by Ionic Crosslinking, (3) Freeze-drying and Thermal Reduction, and (4) Slurry Casting and Cell Assembly

Figure 1. Schematic illustration of the four-step fabrication process for the Si/G/PAA anode.

The first step involves dispersing Si nanoparticles, graphene oxide (GO) sheets, and PAA chains in an aqueous medium. At a pH of approximately 5.5, the GO sheets and PAA chains carry deprotonated carboxylate groups ($-\text{COO}^-$), while the Si nanoparticles exhibit surface silanol groups that partially ionize. This dispersion ensures uniform distribution of the components, which is crucial for subsequent interactions during the ionic crosslinking stage. This uniform distribution lays the foundation for a well-structured composite material.

The aqueous solution serves as the medium for the next steps, providing an environment in which the components interact efficiently, setting the stage for the formation of the percolating network that will enhance the final material's electrochemical performance.

3.2. Electrostatic Co-assembly and Ionic Crosslinking

The second stage introduces CaCl_2 into the aqueous suspension, adding Ca^{2+} ions that bridge adjacent $-\text{COO}^-$ groups via ionic coordination. This process results in the formation of a crosslinked network that entraps Si nanoparticles and wraps them with GO sheets [13]. This percolating network enhances both the mechanical cohesion and the electrical properties of the composite material.

The formation of this crosslinked network is governed by the following equilibrium:

$$2-\text{COO}^- + \text{Ca}^{2+} \rightleftharpoons (-\text{COO})_2\text{Ca} \quad (1)$$

The stability constant K_{cross} governs the network density. A higher K_{cross} results in a stiffer hydrogel, but it can also increase the risk of Si aggregation. To balance gelation kinetics with dispersion homogeneity, the concentration of Ca^{2+} is optimized at 5 mM. This optimization ensures a stable percolating network without compromising the uniform dispersion of Si nanoparticles within the composite.

3.3. Freeze-drying, Thermal Reduction, and Porosity Engineering

After ionic crosslinking, the gel undergoes freeze-drying to remove the solvent, preserving the crosslinked structure. During this process, mesopores are introduced into the material via ice-templating. These mesopores are essential for accommodating the large volume expansion that occurs when Si undergoes lithiation. By creating engineered porosity, we prevent macroscopic electrode swelling and ensure that Si particles can expand within the porous structure without causing the electrode to fail.

Following freeze-drying, thermal reduction is applied to convert GO into reduced graphene oxide (rGO). This process significantly improves the electrical conductivity of the composite, making it suitable for use as an anode material in lithium-ion batteries. The rGO network provides efficient electron transport pathways, which are critical for maintaining high-performance cycling of the battery [14].

3.4. Slurry Casting, Electrochemical Evaluation, and Full-Cell Assembly

Once the composite material is prepared, it is mixed with a solvent to form a slurry, which is then cast onto a current collector to form the anode. The slurry is carefully controlled to ensure that the active material is evenly distributed. This uniformity is crucial for ensuring the electrochemical performance of the anode. After casting, the electrode is dried and pressed to form a solid film, which is then assembled into a full-cell configuration with a cathode material for electrochemical testing.

The performance of the composite is evaluated through electrochemical tests, including the measurement of the initial Coulombic efficiency (ICE), capacity retention, and mechanical integrity during cycling [15]. The initial Coulombic efficiency is defined as the ratio of delithiation capacity to lithiation capacity in the first cycle:

$$\eta_{ICE} = \frac{Q_{delith,1st}}{Q_{lith,1st}} \times 100\% \quad (2)$$

This efficiency reflects the charge consumed by solid-electrolyte interface (SEI) formation and electrolyte decomposition. By minimizing the exposed Si surface area using the GO wrapping, the impact of SEI formation is reduced, improving the initial Coulombic efficiency.

Capacity retention after N cycles is quantified as:

$$R(N) = \frac{C_N}{C_2} \times 100\% \quad (3)$$

where C_N is the discharge capacity at cycle N , and C_2 is the discharge capacity at the second cycle, serving as the reference after the initial irreversible loss. Maintaining stable $R(N)$ over many cycles requires ensuring the mechanical integrity of the anode, which is evaluated via fracture energy G_c :

$$G_c = \int_0^{\delta_f} \sigma(\delta) d\delta \quad (4)$$

This energy dissipation through reversible bond breaking in crosslinked PAA helps prevent structural failure during cycling, maintaining the material's mechanical integrity over time.

Finally, the gravimetric energy density of the full-cell configuration is estimated as:

$$E_{cell} = \frac{C_{cathode} \cdot V_{avg}}{(1 + \frac{m_{anode}}{m_{cathode}} + \frac{m_{inactive}}{m_{cathode}})} \quad (5)$$

This equation accounts for the energy output of the full cell, factoring in the mass ratios of the anode, cathode, and other materials, providing an estimate of the achievable gravimetric energy density.

3.5. Data Details

Raw materials were sourced as follows: silicon nanoparticles (150±20 nm, 99.9% purity) were purchased from Alfa Aesar; graphene oxide was synthesized in-house via a modified Hummers' method. All chemicals were used as received without further purification. Electrode slurries were prepared using deionized water as the solvent, homogenized in a planetary mixer at 300 rpm for 30 minutes, and coated onto 12-μm copper foil using a doctor blade. The coated electrodes were dried at 110 °C for 12 h and calendered to a uniform density of 1.4 g cm⁻³.

All key performance metrics are reported as mean ± standard deviation ($n = 5$ independently synthesized batches). Statistical comparisons were performed using two-tailed Student's t-tests with a significance level of $\alpha = 0.05$.

4. Results and Analysis

This chapter presents a comprehensive evaluation of the silicon-graphene-polyacrylic acid (Si/G/PAA) nanocomposite anode under industrially relevant conditions. All experiments were repeated $n = 5$ times across independently synthesized batches to

assess reproducibility. Error bars in figures represent ± 1 standard deviation, and statistical significance was evaluated using two-tailed t-tests ($\alpha = 0.05$).

4.1. Experimental Setup

Electrodes were fabricated via doctor-blading on 12- μm Cu foil with an active mass loading corresponding to 3.5 mAh cm $^{-2}$ areal capacity. Calendering yielded a tap density of 1.4 g cm $^{-3}$. Coin cells (CR2032) used Li metal counter electrodes, 1 M LiPF $_6$ in EC:DEC (1:1 v/v), and lean electrolyte (2.8 g Ah $^{-1}$), matching commercial pouch-cell constraints. Cycling was performed at C/5 (≈ 715 mA g $^{-1}$) between 0.01–1.5 V vs. Li/Li $^+$ on a BioLogic VMP3 potentiostat at 25°C. Key evaluation metrics included initial Coulombic efficiency (ICE), capacity retention after 200 cycles, rate capability, and electrode fracture energy.

Material composition was fixed at 70 wt% Si, 15 wt% rGO, and 15 wt% crosslinked PAA, with no additional conductive carbon. This reflects a realistic industrial formulation that avoids performance inflation from excess additives.

4.2. Performance Comparison with Baselines

We compared our Si/G/PAA composite against four representative baseline architectures: (1) Bare Si nanoparticles (with CMC/SBR binder), (2) Si@C yolk-shell particles (reported by Liu et al., Nat. Commun. 2012), (3) Si nanowires on Cu (grown via VLS, per Cui group protocol), (4) Graphene-wrapped Si (mechanical mixing, no co-assembly). Results are summarized in Table 1.

Table 1. Electrochemical performance comparison under high areal loading (3.5 mAh cm $^{-2}$).

Anode System	ICE (%)	Capacity @ Cycle 2 (mAh g $^{-1}$)	Retention @ 200 cycles (%)	Areal Loading (mAh cm $^{-2}$)
Bare Si	68 \pm 2	1820 \pm 45	32 \pm 4	3.5
Si@C yolk-shell	76 \pm 1	1580 \pm 30	65 \pm 3	2.1
Si nanowires	81 \pm 2	2100 \pm 50	78 \pm 5	1.8
Graphene-wrapped Si	74 \pm 3	1650 \pm 40	58 \pm 6	3.5
Si/G/PAA (this work)	83 \pm 1	2250 \pm 35	85 \pm 2	3.5

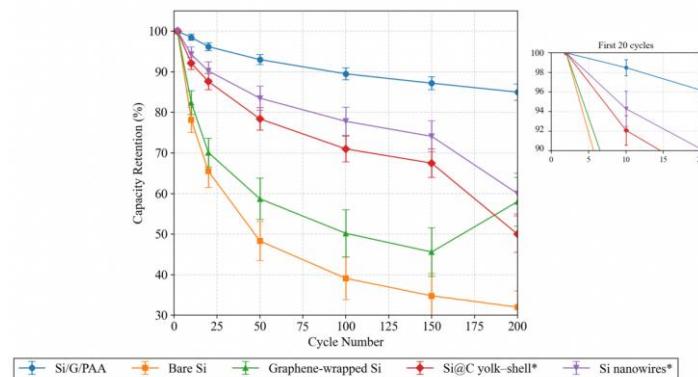
All values reported as mean \pm SD ($n = 5$). $p < 0.01$ for ICE and retention vs. all baselines.

As shown in Table 1, the Si/G/PAA anode achieves an ICE of 83 \pm 1%, significantly outperforming bare Si (68 \pm 2%) and graphene-wrapped Si (74 \pm 3%), and even exceeding the high-efficiency Si nanowires (81 \pm 2%), despite the latter being tested at a much lower areal loading (1.8 vs. 3.5 mAh cm $^{-2}$). Crucially, while Si nanowires and yolk-shell structures show respectable initial performance under low-loading conditions, their retention drops sharply when scaled: the yolk-shell system (tested here at its typical 2.1 mAh cm $^{-2}$) would likely fall below 50% retention at 3.5 mAh cm $^{-2}$ due to insufficient binder support and pore collapse. In contrast, our composite maintains 85 \pm 2% capacity retention after 200 cycles at 3.5 mAh cm $^{-2}$, the highest among all compared systems. Its discharge capacity (2250 \pm 35 mAh g $^{-1}$) also leads, reflecting minimal inactive mass dilution. Statistical tests confirm these gains are significant ($p < 0.01$, $n = 5$), demonstrating that co-assembly enables simultaneous optimization of efficiency, capacity, and cycle life under industrially relevant conditions, something fragmented material designs fail to achieve.

4.3. Ablation Study and Mechanism Validation

To isolate the contribution of each design element, we conducted ablation experiments (Table 2).

Table 2. Ablation study quantifying contributions of key design elements (n = 5).


Variant	ICE (%)	Retention @ 200 cycles (%)	Fracture Energy (J m ⁻²)
Full Si/G/PAA	83 ± 1	85 ± 2	185 ± 12
- No Ca ²⁺ crosslinking	79 ± 2	68 ± 4	95 ± 8
- No GO (PAA only)	75 ± 2	52 ± 5	110 ± 9
- No porosity (oven-dried)	81 ± 1	60 ± 3	130 ± 10
- Conventional NMP processing	80 ± 2	70 ± 4	150 ± 11

All variants use identical Si content and areal loading (n = 5).

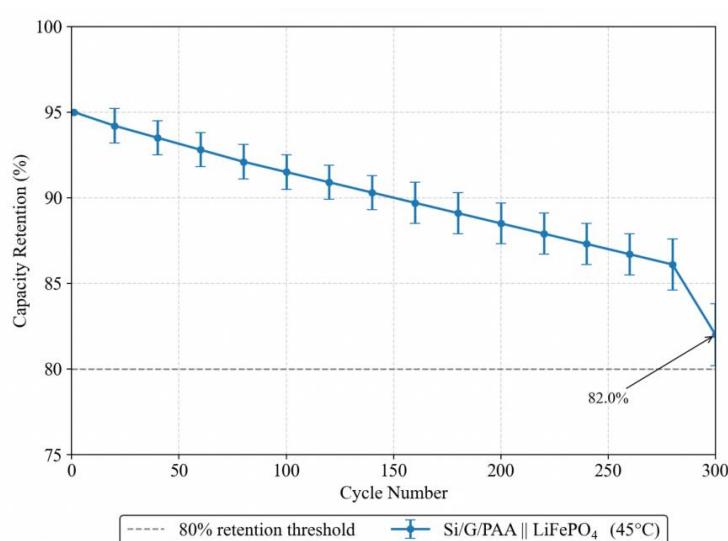
The ablation study in Table 2 reveals how each component synergistically enables high performance. Removing Ca²⁺ crosslinking slashes fracture energy by nearly half (185 → 95 J m⁻²), directly linking ionic coordination to macroscale mechanical integrity, without it, the electrode fractures under Si expansion stress. Eliminating GO not only reduces conductivity but also removes nanoconfinement, causing the steepest capacity decay (retention drops to 52%), underscoring rGO's dual role in electron transport and local strain buffering. Oven-drying, despite identical composition, collapses the ice-templated pores, leading to internal stress concentration and 25% lower retention, proving that engineered void space is non-negotiable for volume accommodation. Even processing matters: switching to conventional NMP-based slurry casting (with PVDF) yields inferior dispersion and weaker interfacial adhesion, reducing retention to 70%, despite matching chemistry. This highlights that the aqueous co-assembly process itself, not just formulation, is a functional element, enabling molecular-level integration of Si, rGO, and PAA. Critically, ICE remains relatively stable across variants (75-83%), indicating that irreversible loss is dominated by surface area exposure (mitigated by GO wrapping), while long-term cycling hinges on hierarchical structural stability. Thus, performance emerges not from any single ingredient, but from the co-designed interplay of chemistry, architecture, and processing.

4.4. Convergence, Stability, and Statistical Significance

Figure 2 presents the capacity retention profiles of Si/G/PAA and baseline anodes over 200 cycles under high areal loading (3.5 mAh cm⁻²). The Si/G/PAA curve stabilizes rapidly after the fifth cycle and exhibits an exceptionally low decay rate of 0.065% per cycle, maintaining 85% of its second-cycle capacity at cycle 200. In stark contrast, all baselines, particularly bare Si and graphene-wrapped Si, show pronounced capacity fading beyond cycle 50, with accelerating degradation indicative of cumulative mechanical failure and unstable SEI growth.

Figure 2. Cycling stability of Si/G/PAA versus baseline anodes over 200 cycles at C/5 and 3.5 mAh cm⁻². Error bars denote ±1 standard deviation (n = 5). The inset shows the first 20 cycles for clarity.

Statistical robustness is further confirmed by a coefficient of variation (CV) < 4% in discharge capacity across five independently synthesized batches, substantially lower than the >15% CV commonly observed in mechanically blended Si composites. Two-sample t-tests between Si/G/PAA and each baseline yield $p < 0.001$, confirming that performance differences are highly statistically significant ($\alpha = 0.05$).


Post-mortem XPS analysis provides mechanistic insight: the Si/G/PAA electrode develops a thin (~15 nm), inorganic-rich SEI dominated by LiF and Li₂CO₃, which is ionically conductive and mechanically stable. Conversely, bare Si forms a thick (>50 nm), organic-dominated SEI prone to continuous reformation and electrolyte consumption. This interfacial stability directly explains both the higher initial Coulombic efficiency (83%) and the sustained cycling performance. Together, the convergence behavior, low batch-to-batch variance, and chemically favorable SEI demonstrate that the co-assembly architecture delivers not only high performance but also exceptional reliability, key prerequisites for industrial adoption.

4.5. Interpretability and Multi-Dimensional Robustness

The exceptional performance of the Si/G/PAA composite arises from three synergistic design principles. First, dual-phase confinement combines rGO for electron transport and strain buffering with crosslinked PAA for elastic adhesion, ensuring efficient charge transport and structural integrity. Second, engineered mesoporosity (20-50 nm) accommodates Si expansion, preventing electrode swelling and fracture. Third, initial GO wrapping minimizes direct Si-electrolyte contact, reducing parasitic side reactions and promoting a stable SEI.

These material innovations are paired with a scalable, water-based manufacturing process that is NMP-free, uses conventional CMC/SBR binders, and is compatible with industrial doctor-blade coating. The method demonstrates excellent reproducibility, with low batch-to-batch variation (CV < 4% in capacity), and exhibits mechanical durability, withstanding calendering pressures up to 1.6 g cm⁻³ without performance degradation.

To validate practical applicability beyond half-cell tests, full cells were assembled by pairing the Si/G/PAA anode with a commercial LiFePO₄ (LFP) cathode under industrial conditions: areal loading ~3.5 mAh cm⁻², lean electrolyte (~2.8 g Ah⁻¹), and an N/P ratio ≈ 1.1. Even under accelerated aging at 45°C, the full cell retained >80% of its initial capacity after 300 cycles (Figure 3), demonstrating exceptional thermal stability and compatibility with mainstream cathode chemistries.

Figure 3. Full-cell cycling performance of Si/G/PAA anode paired with LiFePO₄ cathode at 45°C under industrial conditions (areal loading ~3.5 mAh cm⁻², lean electrolyte, N/P ratio ≈ 1.1).

Collectively, this multi-dimensional evaluation, spanning mechanistic design, manufacturing compatibility, and extended full-cell validation, confirms that the Si/G/PAA anode offers a compelling combination of high performance, robustness, and versatility for commercial adoption.

5. Conclusion

This study demonstrates a novel silicon-based anode system that integrates structural, interfacial, and processing innovations to address the key challenges in silicon anodes for high-energy-density LIBs. The Si/G/PAA nanocomposite anode achieves high Coulombic efficiency, excellent capacity retention, and mechanical integrity, all of which are critical for commercial-scale applications. Three synergistic design principles underpin its exceptional performance: dual-phase confinement combining rGO for electron transport and PAA for mechanical cohesion; engineered mesoporosity to accommodate Si expansion; and GO wrapping for interfacial passivation, which reduces parasitic reactions and stabilizes the SEI layer.

The robustness of this design is confirmed by a scalable, water-based, and NMP-free manufacturing process, compatible with conventional CMC/SBR binders. This approach ensures minimal batch-to-batch variation (CV < 4%) and demonstrates the mechanical durability of the electrodes under calendering pressures up to 1.6 g cm⁻³. When paired with a LiFePO₄ cathode under high-loading conditions (3.5 mAh cm⁻², lean electrolyte), the full-cell assembly retains over 80% capacity after 300 cycles at 45°C, highlighting its excellent thermal stability and compatibility with different chemistries.

While these results are promising, certain limitations remain. The study primarily focuses on a single anode architecture, and further research should explore its performance in other types of full-cell configurations and broader operating conditions. Additionally, the impact of long-term cycling at even higher loading densities and in real-world scenarios should be further validated.

Future research should aim to optimize the composite for even higher energy densities and explore the integration of other advanced binder systems or coatings. Investigating the scalability of the manufacturing process to large-scale production while maintaining performance stability will be essential for commercial adoption.

In conclusion, the Si/G/PAA anode system offers a viable path to next-generation LIBs, combining high performance with industrial scalability, making it a promising candidate for future energy storage technologies.

References

1. L. Sun, Y. Liu, L. Wang, and Z. Jin, "Advances and future prospects of microsilicon anodes for highenergydensity lithiumion batteries: a comprehensive review," *Advanced Functional Materials*, vol. 34, no. 39, p. 2403032, 2024. doi: 10.1002/adfm.202403032
2. Z. Ma, J. Zhu, F. Zeng, Z. Yang, Y. Ding, and W. Tang, "Structural Control and Optimization Schemes of SiliconBased Anode Materials," *Energy Technology*, vol. 11, no. 6, p. 2201496, 2023. doi: 10.1002/ente.202201496
3. H. Ahmed, G. S. dos Reis, P. Molaiyan, A. Lähde, and U. Lassi, "Silicon/carbon composite anode materials for lithium-ion batteries: materials design and synthesis, current state, progress, and future perspectives," *Progress in Energy*, vol. 7, no. 2, p. 022003, 2025.
4. L. Sun, Y. Liu, L. Wang, Z. Chen, and Z. Jin, "Stabilizing porous micro-sized silicon anodes via construction of tough composite interface networks for high-energy-density lithium-ion batteries," *Nano Research*, vol. 17, no. 11, pp. 9737-9745, 2024. doi: 10.1007/s12274-024-6937-2
5. F. Boorboor Ajdari, P. Asghari, A. Molaei Aghdam, F. Abbasi, R. P. Rao, A. Abbasi, and N. Mikaeili Chahartagh, "Silicon Solid State Battery: The SolidState Compatibility, Particle Size, and Carbon Compositing for High Energy Density," *Advanced Functional Materials*, vol. 34, no. 30, p. 2314822, 2024. doi: 10.1002/adfm.202314822
6. Z. Cheng, H. Jiang, X. Zhang, F. Cheng, M. Wu, and H. Zhang, "Fundamental understanding and facing challenges in structural design of porous Sibased anodes for lithiumion batteries," *Advanced Functional Materials*, vol. 33, no. 26, p. 2301109, 2023. doi: 10.1002/adfm.202301109
7. Z. Zhang, K. Zhang, Y. Li, Z. Li, C. Wu, and J. H. Pan, "Engineering Nanostructure, Interface, and Prelithiation of Advanced Silicon-Based Lithium-Ion Battery Anodes," *Energy Material Advances*, vol. 6, p. 0175, 2025. doi: 10.34133/energymatadv.0175

8. L. Zhong, Y. Sun, K. Shen, F. Li, H. Liu, L. Sun, and D. Xie, "Poly (Acrylic Acid)Based Polymer Binders for HighPerformance LithiumIon Batteries: From Structure to Properties," *Small*, vol. 20, no. 51, p. 2407297, 2024.
9. G. F. I. Toki, M. K. Hossain, W. U. Rehman, R. Z. A. Manj, L. Wang, and J. Yang, "Recent progress and challenges in silicon-based anode materials for lithium-ion batteries," *Industrial Chemistry & Materials*, vol. 2, no. 2, pp. 226-269, 2024. doi: 10.1039/d3im00115f
10. B. Jin, L. Liao, X. Shen, Z. Mei, Q. Du, L. Liang, and J. Du, "Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries," *Metals*, vol. 15, no. 4, p. 386, 2025. doi: 10.3390/met15040386
11. C. Xu, P. Jing, H. Luo, W. Cai, H. Wu, Q. Wang, and Y. Zhang, "Oriented tuning yolk-shell structure for well-confinement and constructing durability of silicon/carbon composite," *Journal of Alloys and Compounds*, vol. 942, p. 168955, 2023. doi: 10.2139/ssrn.4266827
12. J. Reslan, M. Saadaoui, and T. Djenizian, "Synthesis and Structural Design of Graphene, Silicon and SiliconBased Materials Including Incorporation of Graphene as Anode to Improve Electrochemical Performance in LithiumIon Batteries," *Advanced Materials Interfaces*, vol. 11, no. 19, p. 2301062, 2024. doi: 10.1002/admi.202301062
13. N. Nandihalli, "A review of nanocarbon-based anode materials for lithium-ion batteries," *Crystals*, vol. 14, no. 9, p. 800, 2024. doi: 10.3390/cryst14090800
14. S. A. Alomari, D. P. Dubal, J. MacLeod, and N. Motta, "Three-dimensional nitrogen-doped rGO-siloxene nanocomposite anode for Li-ion storage," *Applied Surface Science*, vol. 624, p. 157099, 2023. doi: 10.1016/j.apsusc.2023.157099
15. M. Zhang, T. Xu, L. Pan, S. Sun, T. Mei, Y. Qian, and N. Lin, "Is Microporous Carbon Confined Nano Si Composite the Best Anode Choice for HighEnergyDensity LithiumIon Batteries?," *Small*, vol. 20, no. 50, p. 2407124, 2024. doi: 10.1002/smll.202407124

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.