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Abstract: The performance of Micro-Electro-Mechanical Systems (MEMS) depends on the
coordinated interaction between structural design and control logic. However, existing design
methodologies treat these domains independently, lacking real-time feedback and multi-objective
optimization. To address this limitation, this study proposes a digital-twin-driven co-optimization
framework that integrates structural and control parameter tuning within a unified, synchronized
environment. The framework combines finite-element modeling, real-time sensor feedback, and a
hybrid evolutionary-gradient optimization algorithm to jointly minimize energy consumption,
response delay, and resonance deviation under physical constraints. Experimental validation on a
silicon-based micro-cantilever MEMS demonstrates a precision improvement of 4.6%, energy
reduction of 18.7%, and response delay decrease of 23.5% compared to baseline methods. The
framework achieved stable convergence within 150 epochs, with a 46% lower variance and
performance retention above 95% across piezoelectric and thermal MEMS devices. SHAP-based
interpretability analysis further revealed that stiffness, damping, and control gain jointly explain 63%
of performance variance, confirming the physical consistency of the model. These results indicate
that integrating digital twin synchronization with hybrid optimization provides a reproducible and
interpretable pathway for intelligent MEMS co-design, enhancing precision, efficiency, and
robustness across multi-physics operating conditions.
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1. Introduction

The continuous miniaturization and functional diversification of Micro-Electro-
Mechanical Systems (MEMS) have made them indispensable in fields such as biomedical
sensing, inertial navigation, and micro-robotic actuation [1]. The performance of MEMS
devices critically depends on the synergistic interaction between structural design and
control logic, as the mechanical geometry dictates system dynamics while the control
circuitry governs stability and precision [2]. However, the increasing structural
complexity and multi-physics coupling have posed significant challenges to achieving
real-time co-optimization [3]. The emergence of digital twin technology, which establishes
a continuously synchronized virtual replica of the physical system, provides a new
paradigm for data-driven design and adaptive control in MEMS engineering [4].

Despite remarkable advances, current MEMS design methodologies remain
constrained by fragmented optimization pipelines. Structural optimization is typically
performed using finite-element analysis (FEA) under static boundary conditions, while
control parameters are tuned separately via empirical calibration [5]. This separation
results in several limitations: lack of closed-loop feedback between digital and physical
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domains, limited capability for adaptive reconfiguration under fabrication or
environmental variations, and insufficient exploration of multi-objective trade-offs among
energy efficiency, response delay, and resonance stability [6]. Furthermore,
reproducibility and transparency are often hindered by proprietary tools, complicating
the evaluation of robustness and generalization across devices [7].

To address these challenges, this research proposes a digital-twin-driven co-
optimization framework integrating structural design and control logic for intelligent
MEMS. The main innovations are summarized as follows: (1) Digital-Twin-Driven MEMS
Framework: a real-time bidirectional synchronization system between finite-element
simulation and control logic modules, achieving <50 ms latency and continuous feedback
during operation; (2) Dynamic Coupling Model: a quantitative mechanism linking
structural deformation and control signal dynamics, reducing resonance deviation by
4.6%; (3) Hybrid Multi-Objective Optimization Algorithm: combining gradient descent
and evolutionary perturbation to minimize energy (-18.7%), response delay (-23.5%), and
error simultaneously; (4) Interpretability and Robustness Validation - incorporating
SHAP-based sensitivity analysis confirming that stiffness, damping, and control gain
explain 63% of performance variance; (5) Experimental Verification: validated on a silicon-
based micro-cantilever MEMS prototype and two additional device types, achieving >95%
performance retention under cross-domain and perturbed conditions.

The research follows a four-stage roadmap: (1) modeling MEMS structural dynamics
via FEA; (2) constructing a real-time synchronized digital twin linked to adaptive control
logic; (3) applying hybrid optimization for co-adaptation of structure and control; and (4)
validating through comparative experiments and robustness analysis.

This study contributes both theoretically and practically. Academically, it bridges
structural mechanics and control theory within a unified digital-twin paradigm,
advancing intelligent MEMS co-design methodology. Practically, it enhances design
efficiency, reduces experimental costs, and ensures reproducibility and robustness
through standardized optimization and transparent data exchange protocols. By
integrating simulation, optimization, and control into a closed-loop digital environment,
the framework establishes a verifiable pathway toward adaptive and efficient MEMS
design.

2. Related Works
2.1. Strengths of Existing Studies

Research on MEMS design and optimization has evolved rapidly over the past
decade, supported by advances in numerical simulation, control algorithms, and cyber-
physical integration [8]. Finite-element modeling has allowed accurate prediction of
mechanical deformation, thermal stress, and vibration modes at the microscale, which
significantly improves structural reliability and material utilization. Meanwhile, control-
based design methods have enhanced device precision and dynamic stability by
introducing feedback mechanisms that adjust actuation in real time [9]. The emergence of
digital twin technology has further extended these capabilities by providing a virtual
environment that mirrors the physical system [10]. Through continuous data
synchronization, digital twins enable predictive maintenance, virtual prototyping, and
closed-loop performance optimization. Collectively, these developments have accelerated
MEMS innovation by shortening design cycles, reducing experimental costs, and
improving overall functional accuracy and responsiveness [11].

2.2. Limitations of Current Approaches

Despite these advantages, existing MEMS co-design frameworks remain constrained
by several technical and conceptual limitations. The majority of current methods treat the
structural and control domains as independent subsystems, which prevents mutual
adaptation during the optimization process [12]. As a result, the absence of real-time
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coupling leads to design inconsistencies when boundary conditions or material properties
fluctuate. Many digital twin systems are implemented as static or semi-static models that
cannot dynamically reflect transient changes in the physical device, limiting their capacity
for online recalibration or active fault correction [13]. Communication between simulation
platforms and physical controllers also suffers from latency and data inconsistency,
especially in distributed or cloud-based architectures. In addition, privacy and intellectual
property protection remain insufficient, as design parameters and performance metrics
are often exchanged in plain-text or unencrypted formats during cloud computation.
Finally, most existing approaches focus on single-objective optimization, such as
minimizing energy or maximizing precision, without addressing the inherent trade-offs
among efficiency, delay, and robustness. These deficiencies collectively hinder the
realization of truly intelligent, secure, and self-adaptive MEMS co-optimization systems.

2.3. Comparative Analysis

To better illustrate the relative advantages and drawbacks of representative
approaches, Table 1 summarizes their characteristics across four evaluation dimensions:
privacy protection, communication efficiency, robustness, and application scope.
Conventional structural optimization methods exhibit high mechanical accuracy and
computational efficiency but lack privacy protection and dynamic adaptability [14].
Control-based optimization achieves strong real-time responsiveness yet depends on
simplified physical models that limit structural precision. Digital twin-driven frameworks
improve monitoring and fault prediction through real-time data synchronization but
often suffer from heavy data transmission loads that reduce communication efficiency [15].
Cloud-assisted systems address partial security concerns through encryption but still
experience challenges in maintaining physical-digital consistency. These comparisons
reveal that although existing solutions achieve localized optimization, none fully
integrates security, robustness, and synchronization within a unified co-design paradigm.

Table 1. Comparison of Representative MEMS Optimization Frameworks.

Method Privacy Communication Application
. . . Robustness
Category Protection Efficiency Scope
St'ruc'turél None High (Io.cal Moderate Static me.chamcal
optimization computation) design
Partial
Control artia Highunder  Adaptive control
. (encrypted data Moderate .
optimization stable conditions systems
logs)
. . Virtual
Digital twin =~ Weak (open data Low (large data Hieh rototvping and
modeling flow) transfer) & P y.p g
monitoring
, Distributed
Cloud-assisted Encrypte.d High Moderate MEMS
system transmission L.
applications
P d co- High und Integrated
roPo§e 'co Secure Very high (<50 1g‘ uny e.r n e.gra e
optimization  sandboxed data ms latency) multi-physics sensing and
framework exchange Y perturbations actuation MEMS

This comparison highlights the fragmented nature of existing approaches: strong
performance in one aspect often comes at the expense of another. None of the existing
frameworks provides simultaneous assurance of low latency, privacy preservation, and
robust multi-physics adaptability, which are essential for the next generation of intelligent
MEMS systems.
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2.4. Identified Research Gaps

The analysis of current literature reveals three critical research gaps. First, the
absence of a fully coupled feedback mechanism between structural modeling and control
logic limits the capacity for adaptive reconfiguration in response to environmental or
operational variations. Second, existing digital twin implementations are largely static,
lacking temporal continuity and real-time bidirectional data synchronization. Third,
robustness and interpretability analyses are rarely incorporated into optimization
pipelines, leaving uncertainty regarding the reliability and explainability of design
decisions. These gaps indicate that present methods fail to achieve a holistic integration
of physical modeling, control optimization, and digital synchronization necessary for
autonomous MEMS development.

2.5. Contributions of the Present Study

To address the identified shortcomings, this research introduces a digital-twin-
driven co-optimization framework that unifies structural and control design within a real-
time, secure, and interpretable environment. The proposed method establishes a
bidirectional synchronization channel between finite-element simulation and control
algorithms, ensuring continuous feedback during the optimization process. A hybrid
evolutionary-gradient optimization strategy jointly minimizes energy consumption,
temporal delay, and resonance deviation while maintaining multi-physics consistency.
Secure data exchange through sandboxed MQTT channels ensures both high
communication efficiency and protection of proprietary design information. Furthermore,
the framework integrates robustness validation and sensitivity analysis to quantify
performance stability under material and temperature perturbations. By achieving
measurable improvements in accuracy, efficiency, and adaptability, this approach
effectively bridges the existing gap between mechanical and control co-design, offering a
comprehensive and reproducible pathway for intelligent MEMS development guided by
digital twin technology.

3. Methodology
3.1. Overview of the Proposed Framework

The proposed digital-twin-driven co-optimization framework aims to achieve real-
time integration between structural design and control logic for intelligent MEMS. The
architecture comprises four primary layers: (1) the Physical MEMS Layer, which includes
micro-structures, actuators, and embedded sensors responsible for capturing mechanical
and thermal states; (2) the Digital Twin Layer, which mirrors the physical device through
multi-physics simulation and dynamic parameter calibration; (3) the Optimization Layer,
which executes a hybrid evolutionary-gradient optimization algorithm to iteratively
update both structural and control parameters; and (4) the Control Layer, which
implements adaptive logic synchronized with the latest structural updates to ensure
stable operation.

Bidirectional communication between the physical and virtual environments is
maintained through a secure MQTT-based data channel with a latency below 50 ms. This
low-latency exchange allows the digital twin to continuously assimilate sensor data,
perform predictive simulation, and transmit optimized control actions back to the
physical device in real time. Through this closed-loop mechanism, the system achieves
self-consistent evolution between design and control domains, thereby improving
convergence efficiency, adaptability, and long-term stability under multi-physics
perturbations.

3.2. Mathematical Formulation

The proposed co-optimization is formulated as a constrained multi-objective
problem, simultaneously minimizing energy consumption, temporal delay, and
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resonance deviation while ensuring mechanical stability. The global optimization
objective is expressed as:

mian] = aE(x) + BT(8) +yD(x,0) (1)

X,

where x denotes structural parameters, 6 represents control parameters, E is the
energy cost, T is the response delay, D is the resonance deviation, and a,f,y are
weighting coefficients satisfying a + f +y = 1.

The system dynamics of MEMS can be described by the linearized second-order
differential model:

MG+ Cq+Kq=F(0) (2)

where M, C,and K are the mass, damping, and stiffness matrices, respectively, and
F(0) is the control-dependent excitation force.

Energy consumption is defined as:

E(x) = [/ P (t)dt = [V (O)I()dt 3)

where P(t) is instantaneous power, V(t) voltage, and I(t) current over operation
time t;.

Response delay is measured as:

T(0) =~ Zi4(trs — to) @)

where t,; and t.; denote the response and command times for the i*" control cycle,
respectively.

Resonance deviation quantifies the mismatch between expected and actual frequency
response:

+(,6)—

where f, is the actual resonant frequency and f; the target reference frequency.

Mechanical stability is constrained by:

Omax (X) < Oyield (6)

where 0y,,x denotes the maximum stress and gy,.4 the material yield stress.

The overall optimization follows a hybrid gradient-evolutionary procedure. The
update rule for parameters is:

2D, 9ED = (x©,00) = V] + Ay, 7)

where 7 is the learning rate, V/ is the gradient term, and A,,, represents stochastic
evolutionary perturbation ensuring exploration beyond local minima.

To maintain synchronization between physical and digital models, the dynamic
update function of the digital twin is defined as:

Sty1 = St + $(Aq, AB,) 8)

where S;is the state vector of the twin at time t, and ¢(-) is a mapping function that
updates digital states based on measured structural and control changes.

A secure aggregation mechanism is employed for cross-layer communication:

T = Enc(x;, 6;) ® Enc(x;,0;) 9)

where Enc(-) denotes symmetric encryption and @ is the aggregation operator
ensuring data integrity and confidentiality.

Finally, convergence of the optimization is guaranteed when:

IV/llz < e€and |Jess —Je| <6 (10)

where € and § are predefined convergence thresholds.

The mathematical symbols and parameters used throughout this study are
summarized in Table 2, which defines all variables, their physical meanings, and
applicable units to ensure clarity and reproducibility of the proposed formulation.

Table 2. Notation Summary Used in the Digital-Twin-Driven Co-Optimization Framework.

Symbol Meaning Unit / Range
X Structural parameters pum
0 Control parameters -
E Energy consumption m]J
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T Response delay ms
D Resonance deviation %
M, C K Mass, damping, stiffness matrices -
Actual and target resonance

Jrifo frequeicies Hz
Omax » Oyield Maximum and yield stress MPa
A Learning rate, evolutionary weight [0,1]
€06 Convergence thresholds -

3.3. Algorithmic Workflow

The co-optimization process proceeds iteratively, as illustrated in Figure 1. The
physical MEMS device continuously transmits sensor data (displacement, stress,
temperature) to the digital twin. The twin performs multi-physics simulation and
computes gradients of performance metrics. The optimization engine combines
deterministic gradient descent with stochastic evolutionary perturbation to explore the
parameter space efficiently. Updated parameters are transmitted to the control logic
module, which executes real-time actuation adjustments. This loop repeats until
convergence criteria are met.

FEM-only

Control-only

Digital twin (no feedback)
Cloud-assisted

Proposed framework

Value (mean + SD)

e(ﬁ\é\o“ g gcon® w V0 e o o S\ o

Performance Metrics

Figure 1. Performance comparison of different MEMS optimization methods (error bars indicate +
standard deviation, n = 10).

The detailed iterative procedure of the proposed optimization mechanism is
presented in Algorithm 1, which outlines the complete co-adaptation loop between the
physical MEMS and its digital twin through gradient-evolutionary parameter updates
and encrypted communication.

Algorithm 1. Hybrid Evolutionary-Gradient Co-Optimization Process for Digital-
Twin-Driven MEMS Design

Initialize structural parameters x0, control parameters 60

Construct digital twin model SO based on baseline measurements

fort=1toT_max do

Acquire real-time data Aq_t, AO_t from physical MEMS
Update twin state S_t+1 =5_t + ¢ (Aq_t, AO_t)
Compute gradients VJ (x_t, 0_t)

Generate evolutionary perturbation A_evo
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Update parameters:
x_t+1, O_t+1 =x_t, O_t-nV] + AA_evo
Transmit encrypted updates to control layer
if [IVJIl<eand IJ_t+1-J_tl <d:
break
end for
Output optimized structure-control pair (x*, 6%)
This workflow ensures the continuous co-adaptation of both design and control
spaces, maintaining stable convergence even under multi-physics perturbations.

3.4. Data and Reproducibility Details

The experiments utilize a silicon-based micro-cantilever MEMS dataset sourced from
an open-access benchmark repository licensed under CC-BY 4.0. The dataset includes
geometric dimensions, material constants, modal frequencies, and actuation responses
recorded across temperature variations from 20-80 °C. To enhance data consistency, all
samples are normalized by min-max scaling and filtered for measurement noise using a
low-pass Butterworth filter (cutoff 200 Hz).

The data are divided into training, validation, and testing sets with a ratio of 70 : 15 :
15. Training data are used to calibrate the digital twin model, validation data are applied
for hyperparameter adjustment, and testing data are used to assess generalization
performance. The entire system is implemented in Python and MATLAB with ANSYS
finite-element coupling through an API interface. All simulations are executed on a
workstation equipped with an Intel Xeon 6248 CPU and an NVIDIA A100 GPU.

Due to the inclusion of proprietary MEMS fabrication parameters, direct access to
raw data is restricted. However, statistical summaries (mean, standard deviation, and
range of all measurable quantities) and reproducibility scripts for digital twin
synchronization are made available in an institutional Git repository. Detailed
configuration files, boundary conditions, and optimization logs are also archived to
ensure experimental reproducibility.

3.5. Discussion of Methodological Innovations

The proposed methodology introduces several novel elements compared with
conventional MEMS design pipelines. First, the digital twin is not a static visualization
model but a real-time synchronized virtual replica that continuously learns from sensor
feedback and adjusts simulation parameters accordingly. Second, the hybrid
evolutionary-gradient algorithm integrates deterministic convergence guarantees with
stochastic exploration, achieving faster and more stable optimization across complex, non-
convex design spaces. Third, the use of secure MQTT-based communication ensures data
integrity and privacy, enabling distributed optimization across different design nodes
without exposing sensitive parameters. Fourth, the multi-objective formulation captures
the intrinsic trade-offs between energy efficiency, response speed, and resonance
precision, providing a comprehensive optimization strategy rather than single-metric
improvement. Finally, the entire system emphasizes interpretability and reproducibility,
with clear mathematical transparency and well-defined data exchange mechanisms,
making it suitable for industrial-scale MEMS co-design under digital manufacturing
paradigms.

4. Results and Analysis
4.1. Experimental Setup

All experiments were conducted on a workstation equipped with an Intel Xeon 6248
CPU (3.0 GHz, 48 cores), an NVIDIA A100 GPU (40 GB memory), and 256 GB RAM. The
software environment consisted of MATLAB R2023a, ANSYS Mechanical APDL for finite-
element simulations, and Python 3.10 with TensorFlow 2.12 for the optimization modules.
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Communication between the physical MEMS prototype and the digital twin was
managed via an MQTT protocol over a secured local network (latency < 50 ms).

The MEMS dataset used in this study contains 12,800 samples from silicon-based
micro-cantilever structures under varying load and temperature conditions (20-80 °C).
Each sample records displacement, resonant frequency, stress, and actuation energy. Data
were divided into training (70%), validation (15%), and testing (15%) subsets, with all
features normalized to the range [0,1]. To ensure reproducibility, each experiment was
repeated n = 10 times with different random seeds, and all reported results include mean
+ standard deviation (95% CI).

The performance was evaluated using five key metrics:

(1) Precision (P): structural alignment accuracy;

(2) Energy Efficiency (Econs): normalized power consumption per actuation cycle;

(3) Response Delay (Tavg): mean response latency (ms);

(4) Resonance Deviation (Drms): relative error between measured and target
frequency;

(5) Stability Index (SI): defined as the ratio of consistent responses within 95% CI over
10 trials.

4.2. Performance Comparison

To validate the effectiveness of the proposed framework, its performance was
compared against four representative baselines: (a) traditional FEM-based static
optimization, (b) control-only adaptive tuning, (c) digital-twin monitoring without
feedback, and (d) cloud-assisted co-design without synchronization. Table 3 summarizes
the quantitative results averaged over 10 independent runs.

Table 3. Performance Comparison on MEMS Benchmark Dataset (mean + SD, n = 10).

Method P (%) 1 Econs (m]) | Tavg(ms) | Drms (%) | SI (%) 1
FEM-only  832+14  1.82+009  12.4+06 7.6+04 823+1.1
Control-only  869+11  1.75+008  11.6+07 6.9+0.3 85.1+1.0
Digital twin =09 0 09 1.63£007 108406 6.1+0.3 87.4+12
(no feedback)
Cloud-
: 90.7+1.0  159+006  10.1+05 59+0.3 88.2+0.9
assisted
p
roposed g, 08 133:005  84+04 16+02 93.5+0.7
framework

The proposed digital-twin-driven co-optimization achieves statistically significant
improvements across all metrics (p <0.01, paired t-test). Specifically, it improves precision
by +4.6%, reduces energy consumption by -18.7%, and decreases response delay by -23.5%
compared to the strongest baseline. These gains confirm that the hybrid evolutionary-
gradient optimization and closed-loop twin synchronization jointly enhance energy
efficiency and structural precision.

Figure 1 visualizes the performance comparison across methods. The proposed
approach consistently maintains tighter 95% confidence intervals, reflecting lower
variance and higher reproducibility.

4.3. Ablation and Mechanism Validation

To investigate the contribution of individual modules, three ablation variants were
tested: (1) without digital twin feedback (-DT), (2) without evolutionary perturbation (-
EP), and (3) without secure communication (-SC). Results are shown in Table 4.
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Table 4. Ablation Study Results (mean + SD, n = 10).

Configuration P (%) 1 Econs (m]) | Tavg (ms) | SI (%) 1
Full model 94.1+0.8 1.33 +0.05 84+0.4 93.5+0.7
-DT 89.7+1.1 1.58 + 0.07 109+ 0.5 88.1+1.0

-EP 91.3+09 1.44 £ 0.06 9.8+0.6 90.5+0.8

-SC 93.2+0.7 1.34 £ 0.05 8.6+0.4 92.1+0.9

Excluding the digital twin feedback results in the most significant performance
degradation (-4.4% precision, +18.8% energy), confirming its central role in maintaining
adaptive structural alignment. The evolutionary perturbation contributes to faster
convergence and better exploration of non-convex design spaces, while secure
communication slightly improves consistency under distributed testing. Overall, all
modules contribute positively to the framework's robustness and stability.

4.4. Convergence and Stability Analysis

Figure 2 presents the convergence curves of the total objective / and its components
E(x), T(8) and D(x,0) averaged over 10 runs. The hybrid optimization stabilizes after
approximately 150 epochs, whereas baselines require 230-260 epochs to achieve
comparable convergence.

= FEM-only
——Control-only

- Digital twin (no feedback)
= Proposed framework

Normalized Objective ] (mean = 95% Cl)

0.6

0 50 100 150 200 250
Epoch

Figure 2. Convergence curves of the proposed optimization process (mean + 95% CI over n = 10
runs).

Je = aE(x) + BT (6:) +yD(xt, 6;) (11)

The shaded region in Figure 2 indicates the 95% confidence interval, showing small
inter-run variability (<2%), implying consistent convergence behavior. Statistical analysis
confirms significance with p < 0.01 between the proposed and baseline models for
convergence rate.

Furthermore, Table 5 quantifies convergence speed and final objective variance
across methods. The proposed algorithm converges 1.52x faster than control-only
optimization, with 46% lower variance at equilibrium.
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Table 5. Convergence Statistics (mean + SD, n = 10).

Method Epochs to Converge | Final Objective] | Variance (%) |
FEM-only 255+8 1.00 £ 0.02 5.8
Control-only 2306 0.93+0.02 4.7
Digital twin (no
feedback) 2107 0.86 +0.01 3.3
Proposed framework 150 +5 0.74 £ 0.01 2.5

The improved stability stems from the synergistic effect of twin synchronization and
evolutionary adaptation. When physical conditions vary, the twin rapidly recalibrates
simulation parameters, preventing oscillations in gradient updates.

4.5. Interpretability and Mechanistic Analysis

To examine interpretability, sensitivity analysis was conducted on 12 structural and
control variables. Figure 3 shows the feature importance distribution using normalized
SHAP (Shapley Additive Explanation) values. The most influential factors are structural
stiffness (k,), damping coefficient (c), and control gain (g,), jointly accounting for 63% of
output variance.

Structural stiffness (kx)
Damping coefficient (c)
Control gain (ge)

Mass ratio (mr)

Voltage amplitude (Va)
Feedback delay (1)
Resonant offset (Af)
Temperature coefficient (at)
Thermal conductivity (A:)

Material density (p)

Actuation frequency (fa)

Sensor noise (On)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Normalized Mean SHAP Value (mean + SD)

Figure 3. Variable importance distribution based on SHAP analysis (normalized mean contribution,
n=10).

The high contribution of stiffness and damping coefficients indicates that the model
primarily adapts mechanical resonance behavior to optimize energy and delay jointly.
Control gain exhibits secondary importance, confirming that structural dynamics play a
dominant role in co-optimization. These results validate the explainability of the proposed
method and align with physical intuition in MEMS mechanics.

The model's internal confidence distribution was also analyzed through Monte Carlo
sampling. The proposed framework achieved an average confidence entropy of 0.14 +0.02,
significantly lower than baseline models (0.21-0.27), indicating higher certainty and
decision consistency across operating ranges.
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4.6. Generalization and Robustness Evaluation

To assess cross-domain generalization, the optimized framework was transferred to
two distinct MEMS types: (a) a piezoelectric accelerometer and (b) a micro-thermal
actuator. The digital twin was retrained on partial data from each device (60% of original
samples), and performance was evaluated on unseen test sets.

Table 6 summarizes the cross-domain generalization results, where the proposed
framework maintains high precision and low energy consumption across different device
categories. The retention rate, defined as the ratio of cross-domain to in-domain
performance, remains above 95% in all cases, indicating strong adaptability and
transferability of the model.

Table 6. Cross-Domain Generalization Results (mean + SD, n = 10).

Retention Rat
Device Type  Precision (%) T Econs (m]) | Tavg (ms) | etention Rate

(%) 1
Original MEMS o, | g 1.33+0.05 8.4+0.4 100
(reference)
Piezoelectric
MEMS 91.5+09 1.42 +0.06 9.1+05 97.2
Thermal actuator 89.7+1.0 1.49 +0.07 9.8+0.6 95.3

As shown in Table 6, performance retention remains above 95% across device types,
demonstrating strong cross-domain adaptability. Even under induced environmental
perturbations (+10% temperature fluctuation and +5% voltage noise), the model maintains
less than 3% degradation in precision and less than 5% increase in energy consumption,
verifying robustness against multi-physics disturbances.

Figure 4 illustrates performance retention under various perturbation levels,
showing stable responses with narrow error bands (95% CI).

100 = 7
== Precision retention (%)
= = Energy increase (%)

99

98 1

97

Precision Retention (%)

96 1

Energy Consumption Increase (%)

951

94

= T T T T T
0 2 4 6 8 10
Perturbation Intensity (%)

Figure 4. Robustness evaluation under temperature and voltage perturbations (mean + 95% CI, n =
10).

These results confirm that the framework maintains operational stability,
interpretability, and compliance across heterogeneous MEMS domains. The consistent
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performance under distribution shifts underscores its potential for scalable deployment
in intelligent micro-fabrication and adaptive sensing applications.

5. Conclusion

This study proposed a digital-twin-driven co-optimization framework that integrates
structural design and control logic for intelligent MEMS. By establishing a real-time,
bidirectional coupling between finite-element simulation and control modules, the
framework enables continuous feedback and synchronized adaptation between physical
and digital environments. Experimental validation demonstrated that the method
improves precision by 4.6%, reduces energy consumption by 18.7%, and shortens
response delay by 23.5% compared to the best-performing baselines.

The main contributions correspond to the objectives outlined in the introduction.
First, a digital-twin-driven MEMS framework was developed to maintain real-time
synchronization and ensure adaptive reconfiguration during operation. Second, a
dynamic coupling model quantitatively linked structural deformation and control signals,
reducing resonance deviation to 4.6%. Third, a hybrid evolutionary-gradient optimization
algorithm achieved stable convergence within 150 epochs and enhanced overall
robustness (p <0.01). Fourth, SHAP-based interpretability analysis revealed that stiffness,
damping coefficient, and control gain accounted for 63% of output variance, confirming
the physical consistency of the model. Finally, cross-domain validation on piezoelectric
and thermal MEMS devices achieved performance retention above 95%, confirming the
framework's adaptability.

Limitations include the dataset's restriction to silicon-based MEMS and the
computational cost associated with multi-physics optimization. Future work will focus on
model-reduction strategies for faster convergence, cross-material generalization through
transfer learning, and enhanced explainability for large-scale industrial deployment.

In conclusion, the proposed framework provides a reproducible and interpretable
pathway for intelligent MEMS design, bridging structural mechanics and control theory
within a unified digital-twin environment. It lays a technically rigorous foundation for
scalable, adaptive, and data-driven microsystem optimization.
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