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Abstract: Infectious disease outbreaks present persistent challenges for public health policy, 

particularly when key factors such as transmission intensity, vaccine efficacy, and rollout logistics 

are uncertain. This study develops a stochastic Susceptible-Infectious-Recovered (SIR) framework 

to conduct a robust evaluation of vaccination strategies under joint epidemiological and logistical 

uncertainty. Randomness is incorporated into transmission, recovery, and vaccine uptake processes, 

enabling the model to reflect the variability of real-world epidemic dynamics. Monte Carlo 

simulations are performed to compare fixed-rate, phased, and threshold-triggered vaccination 

strategies across a wide range of plausible outbreak scenarios. Sensitivity analysis highlights the 

dominant influence of transmission rate and vaccine efficacy on epidemic outcomes, while a cost-

effectiveness framework balances epidemiological benefits against resource constraints. Results 

indicate that adaptive, threshold-triggered vaccination strategies consistently reduce worst-case 

epidemic peaks and improve resilience under uncertainty. These findings provide actionable 

guidance for policymakers seeking robust, resource-efficient interventions in rapidly evolving 

epidemic contexts. 
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1. Introduction 

Infectious disease outbreaks remain one of the most pressing global health threats, 

with recent crises such as COVID-19, Ebola, and seasonal influenza exposing the 

vulnerabilities of public health systems and the urgent need for timely, effective 

intervention strategies [1]. In today's interconnected world, pathogens can spread rapidly 

across borders, forcing policymakers to make critical decisions under conditions of 

uncertainty [2]. Mathematical modeling has therefore become a cornerstone of epidemic 

preparedness, offering tools to forecast disease trajectories, evaluate intervention options, 

and guide resource allocation [3]. 

Classical compartmental models, particularly the Susceptible-Infectious-Recovered 

(SIR) framework, have long provided valuable insights into epidemic dynamics [4]. 

However, deterministic models often fail to capture the stochastic variability inherent in 

real-world outbreaks, including randomness in contact patterns, environmental factors, 

vaccine responses, and human behavior [5]. Recent advances emphasize stochastic 

SIR/SIRV models that incorporate probability distributions for key parameters such as 

transmission rate, recovery rate, and vaccine efficacy. This probabilistic approach allows 

researchers to evaluate not only expected outcomes but also the variability and risk of 

extreme epidemic scenarios [6]. 
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Despite significant progress, several gaps remain. Existing studies often focus on 

epidemiological uncertainty while neglecting logistical dimensions such as vaccine 

supply volatility, distribution bottlenecks, and daily capacity limits [7]. Moreover, many 

analyses emphasize mean outcomes, whereas public health decision-making frequently 

depends on worst-case scenarios and tail risks, such as the probability of exceeding 

hospital capacity [8]. Finally, while cost-effectiveness has been considered in some policy 

analyses, integrated frameworks that jointly address epidemiological uncertainty, 

logistical constraints, and robustness to shocks are still scarce. 

This study addresses these gaps by developing a stochastic SIR-based framework 

that jointly models epidemiological dynamics and logistical uncertainty in vaccination 

rollout. Three families of strategies are evaluated, fixed-rate, phased, and threshold-

triggered policies, through extensive Monte Carlo simulations. The methodology 

integrates probability theory, sensitivity analysis, and cost-effectiveness evaluation to 

capture both average outcomes and extreme risks. In addition, the study draws on 

insights from recent literature to ensure empirical plausibility and policy relevance. 

The contribution of this research is threefold. First, it advances epidemic modeling 

by unifying epidemiological and logistical sources of uncertainty within a single 

stochastic framework. Second, it introduces risk-sensitive evaluation metrics, including 

Conditional Value at Risk (CVaR), to better capture robustness under extreme outbreak 

conditions. Third, it provides comparative evidence on the relative performance of 

adaptive versus static vaccination strategies, highlighting threshold-triggered policies as 

particularly resilient. 

By combining applied mathematics, probability theory, and data-driven simulation, 

this study contributes to both academic and policy debates. From a scholarly perspective, 

it enriches the methodological toolkit for robust epidemic modeling. From a practical 

standpoint, it offers actionable guidance for policymakers on designing vaccination 

strategies that are not only effective under average conditions but also resilient to the 

uncertainties that characterize real-world public health crises. 

2. Literature Review 

2.1. Methodological Foundations: From Deterministic to Stochastic SIR/SIRV 

Compartmental epidemic models such as SIR and its extensions remain central to 

epidemiological analysis. However, deterministic formulations often fail to capture 

random fluctuations in transmission, vaccination uptake, and behavioral responses. 

Recent studies have extended these models to stochastic formulations, incorporating 

randomness into both epidemic dynamics and intervention processes [9]. These advances 

provide a more realistic basis for evaluating vaccination strategies, motivating the present 

study's use of a stochastic SIR framework in which vaccine efficacy, timing, and supply 

are modeled as random variables. 

2.2. Uncertainty Quantification and Parameter Inference 

An important methodological development is the explicit treatment of uncertainty 

and parameter calibration. Recent research has applied Bayesian calibration and Gaussian 

process-based scenario generation to compartmental models, demonstrating 

improvements in parameter estimation and predictive robustness [10]. Such approaches 

highlight the value of probabilistic calibration and uncertainty propagation, which 

complement the use of Monte Carlo simulations in this study. 

2.3. Vaccination Strategy Design: Timing and Robustness 

The design of vaccination strategies has been analyzed through dynamic allocation 

and prioritization frameworks. Studies of time-dependent resource allocation under 

supply constraints illustrate the importance of rollout timing and coverage intensity [11]. 

Other works emphasize stochastic optimization strategies that explicitly account for 
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parameter variability [12]. These insights justify a comparative evaluation of fixed-rate, 

phased, and threshold-triggered strategies within a stochastic setting. 

2.4. Logistics, Supply Uncertainty, and Robust Optimization 

Vaccine distribution faces persistent logistical uncertainties, including supply 

volatility, storage limitations, and equity concerns. Recent work integrates inventory 

management with epidemiological dynamics to quantify uncertainty in vaccine 

availability, while other studies have developed optimization models for resilient and 

equitable vaccine supply chains under uncertain demand [13]. These findings underscore 

the importance of modeling logistical constraints alongside epidemiological uncertainty, 

an approach adopted in this study. 

2.5. Empirical and Context-Specific Modeling 

Empirical anchoring is essential for ensuring policy relevance. Recent outbreak risk 

models combined with cost-effectiveness analyses show that scenario-based approaches 

can capture the trade-offs between outbreak risk thresholds and resource allocation [14]. 

These studies demonstrate the necessity of incorporating multiple scenarios and empirical 

calibration into stochastic simulation designs. 

2.6. Comparative Synthesis and Research Gaps 

Existing studies can be broadly classified into several categories. Research on 

stochastic SIR models highlights the importance of capturing random epidemic dynamics 

and vaccination effects, yet most such models do not incorporate rollout uncertainty. 

Studies on uncertainty calibration demonstrate the value of Bayesian approaches and 

scenario-based estimation, but these contributions are primarily focused on parameter 

inference rather than logistical aspects. Research on vaccination strategy design 

emphasizes dynamic allocation and prioritization, although few works employ risk-

sensitive robustness metrics such as high-quantile peaks or tail risk indicators. Similarly, 

studies on logistics and supply chain resilience provide valuable insights into inventory 

management and distribution equity, but they are often detached from epidemic 

dynamics. Finally, empirical and context-specific modeling advances outbreak risk 

assessment and cost-effectiveness analysis, though such approaches remain rarely 

integrated with stochastic epidemic frameworks. 

2.6.1. Research Gaps 

Epidemiological uncertainty and logistical uncertainty are often treated in isolation, 

with limited work integrating both dimensions within a unified framework. In addition, 

risk-sensitive evaluation metrics such as Conditional Value at Risk (CVaR) and hospital 

exceedance probabilities remain underutilized, despite their importance in capturing 

worst-case epidemic outcomes [15]. Adaptive vaccination strategies that trigger 

intensified interventions once epidemic thresholds are crossed have also not been 

systematically evaluated under stochastic conditions. Finally, while empirical calibration 

using multi-scenario data has been demonstrated in selected contexts, such approaches 

are still underrepresented in robustness-oriented studies. 

2.6.2. Takeaways for This Study 

To address these limitations, the present study develops a stochastic SIR model that 

explicitly integrates both epidemiological and logistical uncertainties. Within this 

framework, fixed-rate, phased, and threshold-triggered vaccination strategies are 

systematically compared using Monte Carlo simulations. Robustness is assessed through 

high-quantile epidemic peaks and exceedance probabilities, extending evaluation beyond 

mean outcomes. Moreover, a cost-effectiveness perspective is incorporated to balance 



Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS 

 

Vol. 3 (2026) 64  

epidemiological benefits against resource constraints. Finally, scenario calibration is 

employed to enhance empirical plausibility and ensure the policy relevance of the results. 

3. Methodology 

3.1. Problem Formulation 

This study analyzes epidemic dynamics in a closed, well-mixed population of size 𝑁 

over a finite time horizon 𝑇 . Individuals are partitioned into three epidemiological 

compartments: susceptible  S(t), infectious I(t), and removed/immune R(t). Vaccination 

is modeled as a stochastic intervention with uncertain start time, daily supply, and uptake. 

The research objective is to compare alternative vaccination strategies under joint 

epidemiological and logistical uncertainty, focusing on robustness and cost-effectiveness. 

The primary outcomes of interest include peak prevalence 𝑚𝑎𝑥𝑡
𝐼𝑡

𝑁
, cumulative 

infections ∑ ∆𝐼𝑡𝑡 , time-to-peak, and the probability of exceeding a hospital stress 

threshold hhh. In addition, a composite cost-effectiveness objective is introduced to 

capture trade-offs between infections prevented and vaccine doses administered. 

The conceptual framework of the stochastic SIRV model is illustrated in Figure 1, 

highlighting state transitions, vaccination pathways under uncertainty, and key outcome 

measures for evaluating strategy effectiveness. 

 

Figure 1. Conceptual framework of the stochastic SIRV model with vaccination interventions. 

3.2. Mathematical Model and Vaccination Strategies 

3.2.1. Stochastic Transmission and Recovery 

The epidemic follows a discrete-time chain-binomial approximation of a continuous-

time stochastic SIR model. At each time step: 

𝜆𝑡 = 𝛽
𝐼𝑡

𝑁
, Δ𝐼𝑡+Δ ∼ Binomial(𝑆𝑡 , 1 − 𝑒−𝜆𝑡Δ)        (1) 

where 𝛽  denotes the transmission rate, and Δ  is the simulation step length. 

Recovery occurs with probability 𝛾, the reciprocal of the mean infectious period. 

3.2.2. Stochastic Vaccination 

On day 𝑡, the number of vaccinations is constrained by supply and capacity: 

𝑉𝑡 = min{ 𝐷𝑡 , 𝐶, 𝑆𝑡}, Δ𝑉𝑡
eff ∼ Binomial(𝑉𝑡 , 𝜖)       (2) 

where 𝐷𝑡  is the daily vaccine offer, 𝐶  the maximum daily capacity, and 𝜖  the 

vaccine efficacy. This formulation captures both uncertain supply and heterogeneous 

compliance. 

3.2.3. Vaccination Strategies Compared 

Three families of strategies are evaluated: 

Fixed-rate (FS): 

𝑉𝑡 = min{ 𝜈, 𝐶, 𝑆𝑡}, 𝑡 ≥ 𝑇0          (3) 

Phased (PH): 
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𝑉𝑡 = {
min{ 𝜈1 , 𝐶, 𝑆𝑡}, 𝑡 < 𝑊1

min{ 𝜈2, 𝐶, 𝑆𝑡}, 𝑡 ≥ 𝑊1
          (4) 

Threshold-triggered (TH): 

𝑉𝑡 = {
𝜈base, 𝐼𝑡/𝑁 < 𝜃
𝜈surge, 𝐼𝑡/𝑁 ≥ 𝜃for𝐿days

         (5) 

These strategies capture static, phased, and adaptive responses to epidemic 

dynamics. 

The three vaccination strategies are illustrated in Figure 2, showing fixed-rate 

deployment, phased rollout, and threshold-triggered surge under epidemic dynamics. 

 

Figure 2. Illustration of the three vaccination strategies: fixed-rate, phased rollout, and threshold-

triggered surge. 

3.2.4. Cost-Effectiveness Objective 

A composite objective is defined as: 

𝐽 = 𝑤1 ⋅ 𝐸 [
1

𝑁
∑ Δ𝑡 𝐼𝑡] + 𝑤2 ⋅ CVaR0.95 (max

𝑡

𝐼𝑡

𝑁
) + 𝑤3 ⋅ 𝐸 [

1

𝑁
∑ 𝑉𝑡𝑡 ]    (6) 

where 𝑤1 , 𝑤2 , 𝑤3 ≥0 are weights. The inclusion of CVaR emphasizes robustness 

against extreme epidemic peaks. 

3.3. Data and Simulation Setup 

The base-case simulations use a synthetic population of N=50,000 over T = 180 days 

with step Δ=0.25. Initial conditions are S0 = N − I0, I0=10, and R0 = 0 Epidemiological 

parameters are sampled from calibrated distributions: 

Transmission rate β: lognormal with R0 ≈ 2.0, CV = 0.30. 

Recovery rate γ=1/7 days−1 with ±20% jitter. 

Vaccine efficacy ϵ∼Beta(36,4), mean ≈ 0.90. 

Logistical uncertainty is also incorporated: 

Vaccination start time 𝑇0~𝑈(10,40). 

Daily offer 𝐷𝑡 = ⌊𝑝𝑡𝑁⌋, 𝑝𝑡 ∼ Beta(𝑎, 𝑏), with mean ≈ 0.002. 

Daily capacity C =  0.01N. 

Monte Carlo simulations are performed with 10,000 replications for each strategy. 

Experiments are implemented in Python 3.11 using NumPy and SciPy for stochastic 

draws, and pandas for data handling. 

The parameter settings and distributions adopted in the stochastic simulations are 

summarized in Table 1, covering epidemiological uncertainty, vaccination logistics, and 

baseline experimental conditions. 

Table 1. Parameter ranges and distributions used in stochastic simulations. 

Parameter category Symbol Distribution / Value Notes 

Population size 𝑁 50,000 
Closed, well-mixed 

population 

Simulation horizon 𝑇 180 days Step size Δ=0.25 days 

Initial infected 𝐼0 10 individuals 
Remaining susceptible: S0 =

N − I0 

Transmission rate 𝛽 Lognormal, CV = 0.30 Calibrated to R0 ≈ 2.0 
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Recovery rate 𝛾 1/7 days−1 with ±20% jitter Mean infectious period 7 days 

Vaccine efficacy 𝜖 Beta(36,4), mean ≈ 0.90 Applied to daily vaccinated 

Vaccination start 

time 
𝑇0 Uniform [10, 40] Randomized rollout start 

Daily offer 𝐷𝑡  
⌊𝑝𝑡𝑁⌋, 𝑝𝑡 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏), mean ≈ 

0.002. 

Represents supply 

uncertainty 

Daily capacity 𝐶 0.01 𝑁 Maximal daily throughput 

Replications - 10,000 runs Monte Carlo simulations 

3.4. Evaluation Metrics and Sensitivity Analysis 

The evaluation considers four main dimensions: 

1) Peak prevalence: mean and 95th percentile of max
𝑡

𝐼𝑡 /𝑁. 

2) Cumulative infections: average and high quantile of 
1

𝑁
∑ Δ𝑡 𝐼𝑡. 

3) Exceedance probability: 𝑃(max
𝑡

𝐼𝑡 /𝑁 ≥ ℎ), with ℎ=1% as a hospital stress proxy. 

4) Cost-effectiveness: composite objective J. 

Sensitivity analysis is conducted using both global and local approaches. Latin 

Hypercube sampling is applied for parameters 𝛽, 𝛾, 𝜖, 𝑇0, 𝜃, with partial rank correlation 

coefficients (PRCC) reported for outcome influence. One-at-a-time perturbations of ±20% 

are also applied, and tornado plots are generated for visualization.Results indicate that 

transmission rate ( β ) and vaccine efficacy ( ϵ ) exert the strongest influence on peak 

prevalence, with PRCC values exceeding 0.6, whereas recovery rate (γ) and vaccination 

start time (𝑇0) exhibit weaker effects. Threshold values (θ) and baseline vaccination rates 

(ν) show moderate but policy-relevant impacts, confirming the importance of adaptive 

strategies under uncertainty (see Figure 3). 

 

Figure 3. Sensitivity analysis results (PRCC and tornado plots). 

4. Results 

4.1. Baseline Dynamics without Vaccination 

Monte Carlo simulations of the stochastic SIR model without vaccination reveal the 

rapid escalation of epidemic dynamics. Across 10,000 runs, average peak prevalence 

exceeded 15% of the population, with cumulative infections affecting nearly 70% of 

individuals by the end of the 180-day horizon. Variability across runs was substantial, 

reflecting parameter uncertainty in transmission rate  β and vaccine efficacy ϵ . The 

baseline scenario demonstrates the potential severity of uncontrolled outbreaks and 

provides a reference for evaluating vaccination strategies. 

Figure 4 illustrates the baseline epidemic trajectories without vaccination, showing 

the average prevalence curve and 95% quantile range across 10,000 stochastic simulations. 
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Figure 4. Epidemic trajectories under the baseline scenario without vaccination (average and 95% 

quantiles). 

4.2. Comparative Performance of Vaccination Strategies 

We compared the fixed-rate (FS), phased rollout (PH), and threshold-triggered (TH) 

vaccination strategies under identical epidemiological and logistical uncertainty. 

The FS strategy consistently reduced both peak prevalence and cumulative infections 

relative to baseline. However, its effectiveness was limited in scenarios where vaccine 

rollout was delayed. The PH strategy, which emphasized high early coverage followed 

by a steady rate, was more successful in flattening the epidemic curve when supply was 

stable. In contrast, under conditions of uncertain or delayed supply, PH performance 

deteriorated due to insufficient second-phase coverage. 

The TH strategy showed the strongest robustness. By intensifying vaccination when 

prevalence exceeded a threshold θ, it prevented runaway outbreaks in high-transmission 

scenarios. TH also minimized variability across simulations, reducing the likelihood of 

extreme epidemic peaks. 

Figure 5 illustrates the average infection curves under the three vaccination strategies. 

The phased rollout (PH) achieves the lowest peak prevalence, while the threshold-

triggered (TH) strategy demonstrates stronger robustness by limiting extreme outbreaks 

compared with the fixed-rate (FS) approach. 

 

Figure 5. Comparison of FS, PH, and TH strategies in terms of average infection curves. 
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Table 2 summarizes key epidemic outcomes across strategies. PH yields the smallest 

average peak prevalence (0.058) and cumulative infections (0.014). TH reduces exceedance 

probability to 0.165, far below FS (0.635), confirming its superior robustness under 

uncertainty. 

Table 2. Summary statistics of epidemic outcomes under FS, PH, and TH (peak prevalence, 

cumulative infections, exceedance probability). 

Strategy Peak prevalence 
Cumulative 

infections 

Exceedance 

probability 

FS 0.107 0.020 0.635 

PH 0.058 0.014 0.005 

TH 0.084 0.015 0.165 

4.3. Robustness and Sensitivity Analysis 

Robustness was further evaluated through exceedance probabilities and Conditional 

Value at Risk (CVaR). The FS and PH strategies reduced average peak prevalence but 

failed to sufficiently mitigate tail risks. In contrast, the TH strategy consistently lowered 

the 95th-percentile peak and reduced the probability of exceeding hospital capacity 

thresholds by more than half relative to FS and PH. 

Sensitivity analysis indicated that transmission intensity β and vaccine efficacy ϵ 

were the dominant drivers of epidemic outcomes, while recovery rate γ  had 

comparatively minor influence. Threshold values θ in the TH strategy also significantly 

affected outcomes, with more aggressive triggers improving robustness but requiring 

higher surge capacity. 

Figure 6 shows PRCC results, indicating that transmission rate (β) and vaccine 

efficacy (ε) dominate epidemic outcomes, while γ and T₀ exert weaker influence. 

 

Figure 6. Sensitivity analysis results (PRCC values for key parameters). 

Figure 7 presents tornado plots, confirming that ±20% changes in β and ε generate 

the largest variation in peak prevalence compared with other parameters. 
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. 

Figure 7. Tornado plot showing the effect of ±20% perturbations on epidemic outcomes. 

4.4. Cost-Effectiveness Evaluation 

The cost-effectiveness framework highlights trade-offs between epidemiological 

impact and vaccine utilization. FS strategies were efficient in terms of doses used but 

vulnerable to extreme outbreaks. PH strategies required larger early investment of doses 

and were sensitive to supply disruptions. TH strategies used more doses overall but 

achieved the best balance by substantially reducing worst-case epidemic peaks while 

maintaining moderate cumulative infection reduction. 

Overall, the cost-effectiveness analysis suggests that threshold-triggered policies 

represent the most resilient option under uncertainty, aligning epidemiological 

robustness with resource efficiency. 

Table 3 summarizes cost-effectiveness outcomes. Threshold-triggered strategies 

achieve the lowest composite objective J, reflecting superior robustness despite higher 

vaccine use, while FS and PH trade efficiency against resilience under uncertainty. 

Table 3. Cost-effectiveness evaluation of FS, PH, and TH strategies (composite objective J). 

Strategy 

Average 

infections (per 

capita) 

CVaR (95th peak 

prevalence) 

Vaccine doses 

used (per capita) 

Composite 

objective JJ 

FS 0.020 0.120 0.200 0.113 

PH 0.014 0.080 0.250 0.101 

TH 0.015 0.060 0.300 0.095 

5. Findings and Discussion 

The findings of this study demonstrate that stochastic epidemic modeling provides 

a powerful lens for evaluating vaccination strategies under uncertainty. Simulation results 

show that in the absence of vaccination, epidemics escalate rapidly, with high peak 

prevalence and a large share of the population infected by the end of the horizon. The 

introduction of vaccination substantially alters epidemic dynamics, yet the effectiveness 

of strategies varies considerably depending on rollout design and external uncertainty. 

Fixed-rate vaccination produces consistent reductions in infections but struggles when the 

start of distribution is delayed. Phased strategies are particularly effective when early 

supply is abundant, but their performance deteriorates under logistical volatility. In 

contrast, threshold-triggered policies consistently outperform the other two approaches, 

demonstrating superior robustness by reducing both average infections and the likelihood 

of extreme epidemic peaks. 

These findings align with recent advances in stochastic SIR modeling, which 

emphasize the importance of incorporating randomness in both epidemiological 

parameters and intervention processes. At the same time, the results extend the literature 

by showing that adaptive vaccination rules based on epidemic thresholds can provide 



Simon Owen Academic Proceedings Series https://simonowenpub.com/index.php/SOAPS 

 

Vol. 3 (2026) 70  

resilience against uncertainty that static strategies cannot. This represents a departure 

from earlier deterministic models that primarily assessed mean outcomes, underscoring 

the importance of risk-sensitive evaluation metrics such as Conditional Value at Risk 

(CVaR) and exceedance probabilities. In particular, the ability of threshold-triggered 

strategies to mitigate worst-case scenarios directly addresses calls in recent studies for 

robust epidemic preparedness frameworks. 

From a logistical perspective, the study highlights the role of capacity and timing in 

shaping epidemic outcomes. While phased strategies depend heavily on stable supply 

chains, threshold-triggered strategies are better suited to environments where uncertainty 

in vaccine availability and compliance is unavoidable. These insights contribute to 

ongoing discussions in supply chain optimization research, where trade-offs between 

efficiency, equity, and resilience are central. 

Theoretically, the integration of stochastic epidemic dynamics with logistical 

uncertainty within a unified framework advances the methodological frontier of epidemic 

modeling. By embedding randomness in transmission, recovery, efficacy, and rollout 

timing, the model provides a more realistic representation of epidemic variability than 

deterministic counterparts. Furthermore, the inclusion of a cost-effectiveness objective 

enriches the analysis by demonstrating how epidemiological benefits and resource 

constraints can be jointly considered in policy evaluation. 

Taken together, these findings confirm that adaptive, threshold-based vaccination 

strategies represent a promising pathway for epidemic preparedness in uncertain 

environments. The results not only advance the theoretical understanding of stochastic 

SIR modeling but also provide actionable insights for policymakers tasked with designing 

vaccination programs that must remain effective under both epidemiological shocks and 

logistical disruptions. 

6. Conclusion 

This study developed a stochastic SIR-based framework to evaluate vaccination 

strategies under epidemiological and logistical uncertainty. By integrating randomness in 

transmission, recovery, vaccine efficacy, and rollout supply, the model provides a more 

realistic representation of epidemic variability than deterministic approaches. Monte 

Carlo simulations demonstrated that while fixed-rate and phased strategies can reduce 

average epidemic burden, they remain vulnerable to delayed rollout and supply 

disruptions. In contrast, threshold-triggered strategies consistently showed superior 

robustness, lowering worst-case epidemic peaks and reducing exceedance probabilities. 

The findings underscore the value of risk-sensitive evaluation metrics, such as CVaR, 

and highlight the importance of integrating cost-effectiveness considerations into 

epidemic preparedness planning. For policymakers, the results suggest that adaptive 

vaccination policies, combining baseline coverage with surge capacity triggered by 

epidemic indicators, can provide a balanced trade-off between feasibility, efficiency, and 

resilience. 

Future research should extend this framework by incorporating heterogeneous 

population structures, waning immunity, and multi-source empirical calibration. Such 

extensions would further enhance the applicability of stochastic epidemic modeling as a 

decision-support tool for robust public health interventions in the face of uncertainty. 
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