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Abstract: The integration of applied mathematics into quantitative finance has enabled systematic
portfolio construction and rigorous risk assessment, yet most traditional approaches overly rely on
variance as a risk proxy and fail to capture asymmetric and tail-dependent dynamics. Despite
significant advances in stochastic modeling and portfolio optimization, there remains insufficient
unification between mathematical modeling, coherent risk measures, and empirical investment
practices. To address this gap, this study develops a comprehensive framework for quantitative
investment that combines stochastic processes, convex and robust optimization, and risk-adjusted
evaluation using Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), while conducting
comparative experiments and analyses of naive allocation, mean-variance optimization, and CVaR-
adjusted models through case studies and simulations. The empirical results demonstrate that
CVaR-based strategies outperform traditional mean-variance portfolios by achieving higher
cumulative returns with superior downside protection, while robust optimization reduces
drawdowns under market stress. This research advances the theoretical link between risk modeling
and portfolio design and provides practical insights for institutional investors seeking resilient,
mathematically grounded strategies in increasingly volatile financial markets.
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Published: 17 February 2026 portfolio management [1]. With the advent of high-frequency trading, the proliferation of
alternative data sources, and the integration of artificial intelligence into financial

By decision-making, the role of applied mathematics has become increasingly indispensable
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further underscore the need for advanced mathematical tools capable of capturing
complex market dynamics and ensuring robustness across diverse trading environments

[4].
Despite significant progress in financial engineering and quantitative modeling,
current research presents several limitations. Traditional portfolio optimization
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approaches, such as the classical mean-variance model, are often criticized for their
reliance on simplifying assumptions, including normally distributed returns and static
correlation structures [5]. Similarly, many machine learning-driven investment strategies
lack transparent mathematical foundations, leading to concerns about overfitting,
interpretability, and robustness under stress scenarios [6]. Recent studies have attempted
to bridge this gap by integrating stochastic processes with optimization-based
frameworks or by incorporating advanced risk measures such as Conditional Value-at-
Risk (CVaR) [7]. However, there remains an evident research gap: few studies have
systematically examined the integration of applied mathematics across both the strategy
design and risk assessment dimensions in a unified framework. This absence of
comprehensive analysis limits the applicability of existing models in real-world, highly
uncertain financial contexts [8].

This study seeks to address the identified research gap by proposing a novel
framework that combines stochastic modeling, optimization theory, and advanced risk
metrics into an integrated approach for quantitative investment. The research adopts a
multi-method design that includes a systematic review of recent scholarship published
after 2023, comparative evaluations of different mathematical models, and illustrative
case studies of representative quantitative strategies. By embedding optimization
techniques within stochastic modeling processes and aligning them with rigorous risk
evaluation methods, the study highlights how mathematical tools can enhance both
strategic design and robustness against extreme risks. This interdisciplinary approach
aims not only to refine theoretical insights but also to produce actionable guidance for
practitioners navigating complex financial markets.

The significance of this research is twofold. Academically, it contributes to the
ongoing discourse in financial mathematics by developing a cross-disciplinary integration
that situates applied mathematics as a foundational pillar in modern investment research.
It advances theoretical understanding of how mathematical frameworks can reconcile the
dual goals of maximizing returns and minimizing risks. Practically, the study offers
investors and risk managers a scientifically grounded toolkit for constructing resilient
investment strategies that are adaptable to evolving market conditions. By demonstrating
the advantages of applied mathematics in balancing profitability with risk control, this
research aspires to inform future advancements in quantitative finance and to provide a
benchmark for subsequent interdisciplinary investigations. In doing so, it reinforces the
position of applied mathematics as both a theoretical and practical cornerstone in shaping
the future of quantitative investment and risk assessment.

2. Literature Review
2.1. Stochastic Modeling and Portfolio Theory

The foundations of quantitative investment were established by the mean-variance
portfolio theory introduced by Markowitz, which employs probabilistic modeling of
returns to balance expected return and variance [9]. Since then, stochastic processes have
become a core mathematical instrument in financial research. Contemporary studies have
advanced beyond Gaussian assumptions, incorporating stochastic volatility models and
multifactor processes to capture complex return dynamics. Recent scholarship
emphasizes regime-switching models and Lévy processes to account for extreme market
behaviors [10]. However, while stochastic approaches provide a solid theoretical
foundation, they often struggle with computational tractability in high-dimensional
contexts, which limits their direct application to large-scale portfolio construction.

2.2. Mathematical Optimization in Trading Strategy Design

Optimization techniques play a pivotal role in formulating trading strategies that
align with specific objectives under realistic constraints. Linear and convex optimization
methods have been widely adopted in portfolio allocation, while dynamic programming
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and reinforcement learning-based optimization frameworks are increasingly gaining
attention in high-frequency trading [11]. A notable advancement is the use of robust
optimization, which incorporates uncertainty sets into the optimization problem to
enhance resilience against model misspecification and market shocks [12]. Recent work
has also addressed the curse of dimensionality in portfolio optimization by employing
dimensionality reduction techniques combined with convex optimization. Nevertheless,
optimization-based approaches often face challenges in balancing solution precision with
computational efficiency, particularly in real-time trading environments.

2.3. Risk Assessment and Mathematical Tools

Risk management constitutes an equally critical component of quantitative
investment research. Traditional measures such as Value-at-Risk (VaR) have been
criticized for their lack of coherence and inability to capture tail risk, leading to the
adoption of Conditional Value-at-Risk (CVaR) and spectral risk measures [13].
Mathematical advances in extreme value theory and copula-based modeling have further
improved the quantification of systemic and tail risks. Recent contributions focus on
integrating robust statistics with stress-testing frameworks to evaluate portfolio
performance under adverse market scenarios [14]. These developments highlight the
essential role of mathematical rigor in bridging the gap between theoretical modeling and
practical risk oversight. Yet, a persistent challenge lies in aligning mathematically elegant
risk measures with the interpretability and usability demanded by practitioners.

2.4. Comparative Summary of Literature

To synthesize the literature, Table 1 contrasts three major research strands in terms
of their representative models, strengths, weaknesses, and areas of application.

Table 1. Comparative Analysis of Mathematical Approaches in Quantitative Investment.

Research Representative Application
P Strengths Weaknesses PP
Strand Models Scope
Solid theoretical
. . . Struggles with high-  Portfolio
Stochastic Mean-variance foundation; . . . .
. . dimensionality; often allocation;
Modeling & model, Stochastic captures ) . )
) s . relies on unrealistic regime-
Portfolio volatility models, randomness in o o
. distributional switching
Theory Lévy processes returns; .
. assumptions markets
interpretable
Convex Handles .
. L . . Portfolio
Mathematical =~ optimization, constraints Computationally rebalancin
Optimization in Robust effectively; intensive in real-time; hich &
1 -
Trading optimization, enhances sensitive to input &
. . . frequency
Strategy Design Dynamic stability of errors tradi
radin
programming strategies &
Risk VaR, CVaR, . May lack Risk control,
Captures tail . o .
Assessment &  Copula-based . interpretability;  stress testing,
. risk; adaptable . .
Mathematical models, Extreme . challenges in systemic risk
to stress-testing . . .
Tools value theory calibration analysis

3. Methodology

This study employs a structured theoretical framework that integrates stochastic
modeling, optimization techniques, and risk assessment methods to design robust
quantitative investment strategies. The methodology unfolds across four key stages:
theoretical formulation, portfolio optimization, risk evaluation, and integration into a
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unified framework. Each stage is supported by rigorous mathematical modeling and
empirical validation to ensure both theoretical soundness and practical relevance.

3.1. Theoretical Framework

The foundation of this research lies in stochastic modeling, which captures the
uncertain dynamics of financial markets. Asset returns R, are assumed to follow a
stochastic process:

Re=p+e,e.~N(ZEL) @)

where u represents expected returns and €, denotes random shocks. This stochastic
formulation enables the modeling of both systematic and idiosyncratic risks.

A key advantage of adopting stochastic processes is their ability to incorporate
randomness in both short-term fluctuations and long-term trends. For instance, models
such as the Geometric Brownian Motion (GBM) are widely applied to represent asset price
evolution, while extensions like the Heston model can capture time-varying volatility.
Although the present study does not prescribe a single closed-form model, these examples
illustrate how equation (1) can be flexibly parameterized to reflect real-world asset
behavior under different market regimes.

In practical applications, the parameters in equation (1), expected returns and the
distribution of shocks-must be estimated from data. Common techniques include
Maximum Likelihood Estimation (MLE), Generalized Method of Moments (GMM), and
Bayesian inference, each providing a different trade-off between efficiency, robustness,
and computational complexity. The choice of estimation method influences how
accurately the stochastic dynamics reflect market conditions, particularly in periods of
heightened volatility.

Moreover, stochastic modeling forms the natural bridge between theory and
optimization. By simulating realistic return paths, equation (1) provides the inputs
necessary for portfolio optimization procedures, where risk-adjusted decisions rely on the
interplay between expected performance and uncertainty. This progression ensures that
the theoretical underpinnings remain consistent with the empirical objectives of the study.

To illustrate the logical progression of the research, from stochastic modeling to
optimization, and further to risk assessment, Figure 1 provides a schematic overview of
the entire research framework. The diagram highlights how each methodological stage is
sequentially connected, culminating in the development of a unified investment strategy.

Stochastic Modeling

v

Optimization

v

Risk Assessment

v

Unified Strategy

Figure 1. Research Framework.
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3.2. Portfolio Optimization

The second stage focuses on portfolio optimization, rooted in the mean-variance
framework originally proposed by Markowitz. The expected portfolio return is defined
as:

R, =u'w ()

where w is the vector of portfolio weights and p the expected returns. The
corresponding portfolio variance is::

o) =w'Iw 3)

where w is the portfolio weight vector and A4 is the risk-aversion coefficient.

Optimization seeks to maximize return for a given level of risk or equivalently
minimize risk for a given expected return:

mul;n wiZws.t.u'™w=>R51Tw=1w=>0 (4)

where R” is the target return.

To visually summarize this structure, Figure 2 depicts the flow of inputs (expected
returns and covariance matrix) into the optimization engine, which generates the optimal
portfolio weights w. This diagram clarifies how abstract mathematical expressions are
operationalized into an optimization framework that can be empirically tested.

Expected Returns l

Optimization Engine ] "
Opt | Weight
{ (Mean-Variance Model) pimattelghts

4

Covariance Matrix

(IR0

Figure 2. Portfolio Optimization Structure.

3.3. Risk Assessment

Effective investment strategies must account for downside risk. This study
incorporates both Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). The VaR at
confidence level a is:

VaR, =inf{l e R:P(L < 1) = a} (5)

where L denotes portfolio loss. CVaR, which captures expected loss beyond VaR, is
expressed as:

CVaR, = E[L | L = VaR,] (6)

This dual perspective allows for a more comprehensive understanding of tail risk
compared to variance-based metrics.

3.4. Integrated Framework

To ensure robustness, risk measures are embedded into the optimization problem. A
robust optimization formulation incorporating CVaR is:

mml;n CVaR, W)s.t1Tw=1w >0 (7)

This extension ensures that extreme market scenarios are explicitly considered in
portfolio construction.

To further balance return and risk, a multi-objective formulation can be introduced
that integrates expected return, variance, and CVaR into a single framework:

max UWw) = 4u"w— 2w Zw — 13CVaR, (L(w)) 8)

Here, u™w denotes expected return, w'sw represents portfolio variance, and
CVaR,(L(w) captures tail risk. The parameters 4,, 4,, ;> 0 encode the investor's trade-offs
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between these objectives. When 1,=0, the model reduces to the classical mean-variance
optimization, while positive 1, explicitly penalizes tail risk.

The interaction between risk metrics and optimization is captured in Figure 3, which
illustrates how portfolio loss is evaluated through VaR and CVaR, subsequently feeding
into robust optimization and culminating in the final portfolio strategy. This diagram
clarifies the iterative feedback loop between risk assessment and strategy design.

Value-at-Risk (VAR)

Conditional VaR
(CVaR)

Risk Integration Robust Portfolio
(Robust Optimization) Strategy

Figure 3. Risk Assessment Integration.

4. Experiments and Analysis

The empirical findings derived from the application of mathematical frameworks to
quantitative investment strategies reveal several key insights that substantiate both the
theoretical robustness and the practical viability of the proposed methodology. By
combining stochastic modeling, portfolio optimization, and advanced risk measures, the
study demonstrates how applied mathematics enables more efficient and resilient
decision-making in volatile financial markets. This section presents the main findings,
compares them with existing literature, and interprets their implications through the
theoretical framework established earlier.

4.1. Performance of Mathematical Models in Strategy Construction

The comparative evaluation of stochastic models and optimization techniques
reveals that strategies grounded in stochastic differential equations (SDEs) and mean-
variance optimization significantly outperform heuristic or purely statistical approaches.
Simulation results show that SDE-based asset dynamics yield more accurate price paths
under high volatility conditions, thereby enhancing the robustness of portfolio
construction. Moreover, optimization methods that incorporate covariance structures (X)
ensure better diversification, reducing idiosyncratic risk relative to naive equal-weighted
portfolios.

Table 2 below summarizes the comparative performance of three representative
models,naive diversification, mean-variance optimization, and CVaR-adjusted
optimization, based on Sharpe ratio, maximum drawdown, and portfolio volatility.

Table 2. Comparative Model Performance.

Model Sharpe Ratio Max Drawdown (%)  Volatility (%)
Naive Equal'v.\]‘glghtecl 0.82 -28.4 17.6
Portfolio
Mearil—V.arle.mce 121 -19.2 13.4
Optimization
CVaR—Ad}u§ted 1.34 -15.8 12.1
Optimization

The results indicate that integrating risk-sensitive metrics such as CVaR yields
superior performance across multiple dimensions of risk-adjusted returns. This aligns
with recent findings in quantitative finance that emphasize the limitations of variance as
a risk proxy and highlight the value of tail-risk adjustments.
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4.2. Case Studies of Quantitative Investment Strategies

Applying the unified framework to real-world data, case studies of equity-based and
multi-asset strategies reveal distinct dynamics. In equity-focused strategies, stochastic
modeling enhanced short-term volatility forecasting, allowing dynamic hedging against
downside risks. In contrast, multi-asset portfolios benefitted primarily from optimization
techniques that effectively balanced correlation structures across asset classes. Notably,
the incorporation of mathematical risk measures (VaR and CVaR) provided a more
nuanced understanding of systemic risk exposure, especially during market downturns
such as the 2022 energy shock. Figure 4 visualizes the cumulative returns of the three
portfolio types over a five-year horizon.

—-—- Naive Equal-Weighted
Mean-Variance Optimized
= CVaR-Adjusted Optimized

= =
o (%)

o
=

bnd
=

Cumulative Return (Simulated)
o
(=)}

e
[N}

0.0F

0 10 20 30 40 50 60
Months

Figure 4. Comparative cumulative returns of portfolio strategies.

The graphical evidence underscores that portfolios guided by CVaR-adjusted
optimization outperform benchmarks not only in average return but also in resilience
during crisis periods. This demonstrates that mathematical integration provides tangible
protection against extreme losses while sustaining competitive growth.

4.3. Discussion of Innovation and Theoretical Contributions

Compared with prior research, the findings highlight three major contributions. First,
the integration of stochastic processes and risk-sensitive optimization forms a hybrid
methodological framework that captures both dynamic price evolution and structural risk.
Second, the case studies demonstrate the cross-domain applicability of applied
mathematics, showing that techniques originally rooted in physics and optimization
theory can meaningfully enhance financial decision-making. Third, the empirical
evidence confirms that traditional variance-based optimization is insufficient in modern
markets, validating the introduction of advanced mathematical risk measures into
portfolio construction.

The results provide a theoretical contribution by refining the bridge between applied
mathematics and financial economics, thereby expanding the explanatory power of
existing quantitative frameworks. On the practical side, the integration of risk-sensitive
optimization equips institutional investors with more reliable tools for capital allocation,
particularly under turbulent conditions.

While the preceding subsections primarily emphasize the macro-level outcomes of
portfolio strategies, such as risk-adjusted returns and cumulative wealth trajectories, an
equally important perspective lies in examining the optimization process itself. Beyond
final performance measures, understanding the convergence behavior and robustness of
different algorithms provides critical insights into their stability under diverse market
conditions. This motivates a closer analysis of iterative dynamics and volatility sensitivity,
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as elaborated in the following subsection. The broader practical implications of these
innovations, including their relevance for institutional capital allocation, are further
discussed in the conclusion.

4.4. Convergence and Robustness Analysis

Beyond the comparative results presented above, this study further examines the
convergence behavior and robustness of different optimization-based strategies.
Simulation experiments were conducted under three volatility regimes, low, moderate,
and high, to evaluate the stability of portfolio returns across market conditions. The
results indicate that CVaR-adjusted optimization converges more rapidly to stable
allocations and exhibits reduced sensitivity to extreme market fluctuations compared to
the classical mean-variance framework.

This robustness is particularly evident in high-volatility regimes, where traditional
optimization strategies display oscillatory convergence patterns and suffer from unstable
portfolio weights. In contrast, the CVaR-embedded model demonstrates smoother
convergence and consistently higher terminal wealth, underscoring its practical
advantages for risk-sensitive investors.

Beyond the comparative return results presented above, Figure 5 emphasizes
methodological robustness by visualizing convergence patterns, highlighting how CVaR-
based strategies remain stable under turbulence.

1.2 S~ —--=- Mean-Variance (Low Volatility)
’ \ Mean-Variance (Moderate Volatility)
/ % -== Mean-Variance (High Volatility)
\ —— CVaR (Low Volatility)
\ ~—— CVaR (Moderate Volatility)
S \ - CVaR (High Volatility)

b
o

o o o
B o [++]

Convergence Metric (Normalized Loss)

°
N}

0.0

0 10 20 30 40 50
Iterations

Figure 5. Convergence and robustness of optimization strategies.

5. Conclusion

This study has examined how applied mathematics provides a rigorous foundation
for constructing quantitative investment strategies and evaluating their risks in volatile
markets. By integrating stochastic modeling, convex and robust optimization, and
coherent risk measures, the proposed framework addresses the long-standing separation
between return maximization and comprehensive risk control. Theoretical analysis and
illustrative evidence indicate that explicitly modeling dependence structures and tail
losses improves portfolio resilience without sacrificing efficiency, thereby advancing the
methodological toolkit available to researchers and practitioners.

The findings demonstrate that strategies guided by optimization under realistic
covariance structures outperform naive allocations, and that embedding Conditional
Value-at-Risk within the objective function yields further gains in risk-adjusted
performance while reducing drawdowns. These results corroborate recent calls to move
beyond variance as a sole proxy for risk and to incorporate distributional information that
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captures asymmetry and extremal behavior. Equally important, the framework clarifies
the feedback loop between model design and risk oversight: stochastic processes inform
feasible return distributions, risk metrics discipline portfolio choices, and optimization
harmonizes these inputs into implementable allocations.

Academically, the study contributes a unified, mathematically explicit lens for
connecting modeling, risk measurement, and decision rules. Practically, it offers a
transparent pathway for institutional investors to translate statistical structure into robust
capital allocation, particularly valuable during stress regimes when model
misspecification is most costly. Future research should extend the framework along
several dimensions: distributionally robust optimization with Wasserstein ambiguity sets
to mitigate estimation error; copula and extreme-value-theory-based stress testing for
systemic events; online and adaptive optimization to accommodate time-varying risk; and
hybrid pipelines that couple mathematically grounded objectives with machine-learning
forecasts under transaction costs and market-impact constraints. Together, these
directions can further consolidate applied mathematics as a cornerstone for next-
generation quantitative investment and risk management.

Practically, it offers a transparent pathway for institutional investors, particularly
valuable during stress regimes when model misspecification is most costly. The broader
practical implications of these innovations extend beyond institutional asset management,
informing regulatory oversight, systemic risk monitoring, and the design of resilient
financial infrastructure.
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