

Article Open Access

Applied Mathematics in the Construction of Quantitative Investment Strategies and Risk Assessment

Mingkang Chen ^{1,*}

¹ Qingdao Academy, Qingdao, Shandong, 266213, China

* Correspondence: Mingkang Chen, Qingdao Academy, Qingdao, Shandong, 266213, China

Abstract: The integration of applied mathematics into quantitative finance has enabled systematic portfolio construction and rigorous risk assessment, yet most traditional approaches overly rely on variance as a risk proxy and fail to capture asymmetric and tail-dependent dynamics. Despite significant advances in stochastic modeling and portfolio optimization, there remains insufficient unification between mathematical modeling, coherent risk measures, and empirical investment practices. To address this gap, this study develops a comprehensive framework for quantitative investment that combines stochastic processes, convex and robust optimization, and risk-adjusted evaluation using Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), while conducting comparative experiments and analyses of naïve allocation, mean-variance optimization, and CVaR-adjusted models through case studies and simulations. The empirical results demonstrate that CVaR-based strategies outperform traditional mean-variance portfolios by achieving higher cumulative returns with superior downside protection, while robust optimization reduces drawdowns under market stress. This research advances the theoretical link between risk modeling and portfolio design and provides practical insights for institutional investors seeking resilient, mathematically grounded strategies in increasingly volatile financial markets.

Keywords: quantitative investment; applied mathematics; risk assessment; portfolio optimization; Conditional Value-at-Risk (CVaR)

Received: 09 December 2025

Revised: 26 January 2026

Accepted: 10 February 2026

Published: 17 February 2026

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

1. Introduction

The rapid expansion of global financial markets and the accelerating digitalization of investment practices have placed quantitative investment at the center of modern portfolio management [1]. With the advent of high-frequency trading, the proliferation of alternative data sources, and the integration of artificial intelligence into financial decision-making, the role of applied mathematics has become increasingly indispensable [2]. Mathematical techniques such as stochastic modeling, convex optimization, and probabilistic risk analysis not only enhance the precision of investment strategies but also provide a rigorous framework for balancing profitability against uncertainty [3]. In today's volatile and interconnected markets, the ability to harness mathematical models for both strategy construction and risk evaluation is no longer optional but essential for institutional investors, hedge funds, and asset managers seeking sustainable performance. The challenges of extreme market fluctuations, systemic contagion, and tail-risk events further underscore the need for advanced mathematical tools capable of capturing complex market dynamics and ensuring robustness across diverse trading environments [4].

Despite significant progress in financial engineering and quantitative modeling, current research presents several limitations. Traditional portfolio optimization

approaches, such as the classical mean-variance model, are often criticized for their reliance on simplifying assumptions, including normally distributed returns and static correlation structures [5]. Similarly, many machine learning-driven investment strategies lack transparent mathematical foundations, leading to concerns about overfitting, interpretability, and robustness under stress scenarios [6]. Recent studies have attempted to bridge this gap by integrating stochastic processes with optimization-based frameworks or by incorporating advanced risk measures such as Conditional Value-at-Risk (CVaR) [7]. However, there remains an evident research gap: few studies have systematically examined the integration of applied mathematics across both the strategy design and risk assessment dimensions in a unified framework. This absence of comprehensive analysis limits the applicability of existing models in real-world, highly uncertain financial contexts [8].

This study seeks to address the identified research gap by proposing a novel framework that combines stochastic modeling, optimization theory, and advanced risk metrics into an integrated approach for quantitative investment. The research adopts a multi-method design that includes a systematic review of recent scholarship published after 2023, comparative evaluations of different mathematical models, and illustrative case studies of representative quantitative strategies. By embedding optimization techniques within stochastic modeling processes and aligning them with rigorous risk evaluation methods, the study highlights how mathematical tools can enhance both strategic design and robustness against extreme risks. This interdisciplinary approach aims not only to refine theoretical insights but also to produce actionable guidance for practitioners navigating complex financial markets.

The significance of this research is twofold. Academically, it contributes to the ongoing discourse in financial mathematics by developing a cross-disciplinary integration that situates applied mathematics as a foundational pillar in modern investment research. It advances theoretical understanding of how mathematical frameworks can reconcile the dual goals of maximizing returns and minimizing risks. Practically, the study offers investors and risk managers a scientifically grounded toolkit for constructing resilient investment strategies that are adaptable to evolving market conditions. By demonstrating the advantages of applied mathematics in balancing profitability with risk control, this research aspires to inform future advancements in quantitative finance and to provide a benchmark for subsequent interdisciplinary investigations. In doing so, it reinforces the position of applied mathematics as both a theoretical and practical cornerstone in shaping the future of quantitative investment and risk assessment.

2. Literature Review

2.1. Stochastic Modeling and Portfolio Theory

The foundations of quantitative investment were established by the mean-variance portfolio theory introduced by Markowitz, which employs probabilistic modeling of returns to balance expected return and variance [9]. Since then, stochastic processes have become a core mathematical instrument in financial research. Contemporary studies have advanced beyond Gaussian assumptions, incorporating stochastic volatility models and multifactor processes to capture complex return dynamics. Recent scholarship emphasizes regime-switching models and Lévy processes to account for extreme market behaviors [10]. However, while stochastic approaches provide a solid theoretical foundation, they often struggle with computational tractability in high-dimensional contexts, which limits their direct application to large-scale portfolio construction.

2.2. Mathematical Optimization in Trading Strategy Design

Optimization techniques play a pivotal role in formulating trading strategies that align with specific objectives under realistic constraints. Linear and convex optimization methods have been widely adopted in portfolio allocation, while dynamic programming

and reinforcement learning-based optimization frameworks are increasingly gaining attention in high-frequency trading [11]. A notable advancement is the use of robust optimization, which incorporates uncertainty sets into the optimization problem to enhance resilience against model misspecification and market shocks [12]. Recent work has also addressed the curse of dimensionality in portfolio optimization by employing dimensionality reduction techniques combined with convex optimization. Nevertheless, optimization-based approaches often face challenges in balancing solution precision with computational efficiency, particularly in real-time trading environments.

2.3. Risk Assessment and Mathematical Tools

Risk management constitutes an equally critical component of quantitative investment research. Traditional measures such as Value-at-Risk (VaR) have been criticized for their lack of coherence and inability to capture tail risk, leading to the adoption of Conditional Value-at-Risk (CVaR) and spectral risk measures [13]. Mathematical advances in extreme value theory and copula-based modeling have further improved the quantification of systemic and tail risks. Recent contributions focus on integrating robust statistics with stress-testing frameworks to evaluate portfolio performance under adverse market scenarios [14]. These developments highlight the essential role of mathematical rigor in bridging the gap between theoretical modeling and practical risk oversight. Yet, a persistent challenge lies in aligning mathematically elegant risk measures with the interpretability and usability demanded by practitioners.

2.4. Comparative Summary of Literature

To synthesize the literature, Table 1 contrasts three major research strands in terms of their representative models, strengths, weaknesses, and areas of application.

Table 1. Comparative Analysis of Mathematical Approaches in Quantitative Investment.

Research Strand	Representative Models	Strengths	Weaknesses	Application Scope
Stochastic Modeling & Portfolio Theory	Mean-variance model, Stochastic volatility models, Lévy processes	Solid theoretical foundation; captures randomness in returns; interpretable	Struggles with high-dimensionality; often relies on unrealistic distributional assumptions	Portfolio allocation; regime-switching markets
Mathematical Optimization in Trading Strategy Design	Convex optimization, Robust optimization, Dynamic programming	Handles constraints effectively; enhances stability of strategies	Computationally intensive in real-time; sensitive to input errors	Portfolio rebalancing, high-frequency trading
Risk Assessment & Mathematical Tools	VaR, CVaR, Copula-based models, Extreme value theory	Captures tail risk; adaptable to stress-testing	May lack interpretability; challenges in calibration	Risk control, stress testing, systemic risk analysis

3. Methodology

This study employs a structured theoretical framework that integrates stochastic modeling, optimization techniques, and risk assessment methods to design robust quantitative investment strategies. The methodology unfolds across four key stages: theoretical formulation, portfolio optimization, risk evaluation, and integration into a

unified framework. Each stage is supported by rigorous mathematical modeling and empirical validation to ensure both theoretical soundness and practical relevance.

3.1. Theoretical Framework

The foundation of this research lies in stochastic modeling, which captures the uncertain dynamics of financial markets. Asset returns R_t are assumed to follow a stochastic process:

$$R_t = \mu + \epsilon_t, \epsilon_t \sim \mathcal{N}(0, \Sigma) \quad (1)$$

where μ represents expected returns and ϵ_t denotes random shocks. This stochastic formulation enables the modeling of both systematic and idiosyncratic risks.

A key advantage of adopting stochastic processes is their ability to incorporate randomness in both short-term fluctuations and long-term trends. For instance, models such as the Geometric Brownian Motion (GBM) are widely applied to represent asset price evolution, while extensions like the Heston model can capture time-varying volatility. Although the present study does not prescribe a single closed-form model, these examples illustrate how equation (1) can be flexibly parameterized to reflect real-world asset behavior under different market regimes.

In practical applications, the parameters in equation (1), expected returns and the distribution of shocks-must be estimated from data. Common techniques include Maximum Likelihood Estimation (MLE), Generalized Method of Moments (GMM), and Bayesian inference, each providing a different trade-off between efficiency, robustness, and computational complexity. The choice of estimation method influences how accurately the stochastic dynamics reflect market conditions, particularly in periods of heightened volatility.

Moreover, stochastic modeling forms the natural bridge between theory and optimization. By simulating realistic return paths, equation (1) provides the inputs necessary for portfolio optimization procedures, where risk-adjusted decisions rely on the interplay between expected performance and uncertainty. This progression ensures that the theoretical underpinnings remain consistent with the empirical objectives of the study.

To illustrate the logical progression of the research, from stochastic modeling to optimization, and further to risk assessment, Figure 1 provides a schematic overview of the entire research framework. The diagram highlights how each methodological stage is sequentially connected, culminating in the development of a unified investment strategy.

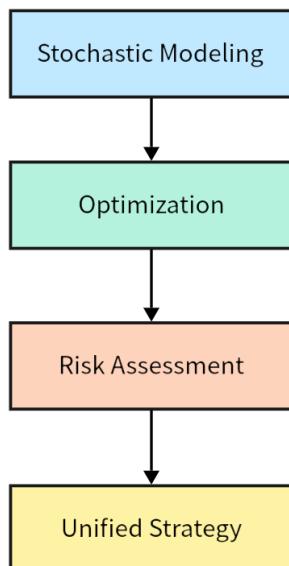


Figure 1. Research Framework.

3.2. Portfolio Optimization

The second stage focuses on portfolio optimization, rooted in the mean-variance framework originally proposed by Markowitz. The expected portfolio return is defined as:

$$R_p = \mu^T w \quad (2)$$

where w is the vector of portfolio weights and μ the expected returns. The corresponding portfolio variance is::

$$\sigma_p^2 = w^T \Sigma w \quad (3)$$

where w is the portfolio weight vector and λ is the risk-aversion coefficient.

Optimization seeks to maximize return for a given level of risk or equivalently minimize risk for a given expected return:

$$\min_w w^T \Sigma w \text{ s.t. } \mu^T w \geq R^*, \mathbf{1}^T w = 1, w \geq 0 \quad (4)$$

where R^* is the target return.

To visually summarize this structure, Figure 2 depicts the flow of inputs (expected returns and covariance matrix) into the optimization engine, which generates the optimal portfolio weights w . This diagram clarifies how abstract mathematical expressions are operationalized into an optimization framework that can be empirically tested.

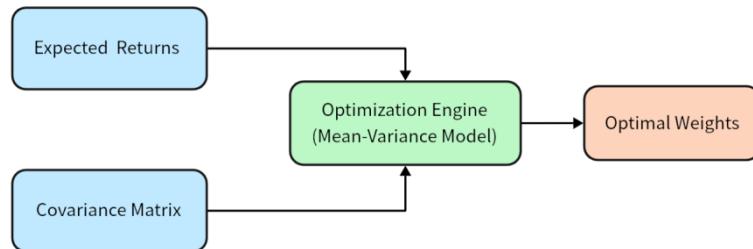


Figure 2. Portfolio Optimization Structure.

3.3. Risk Assessment

Effective investment strategies must account for downside risk. This study incorporates both Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). The VaR at confidence level α is:

$$\text{VaR}_\alpha = \inf\{l \in \mathbb{R} : P(L \leq l) \geq \alpha\} \quad (5)$$

where L denotes portfolio loss. CVaR, which captures expected loss beyond VaR, is expressed as:

$$\text{CVaR}_\alpha = \mathbb{E}[L \mid L \geq \text{VaR}_\alpha] \quad (6)$$

This dual perspective allows for a more comprehensive understanding of tail risk compared to variance-based metrics.

3.4. Integrated Framework

To ensure robustness, risk measures are embedded into the optimization problem. A robust optimization formulation incorporating CVaR is:

$$\min_w \text{CVaR}_\alpha(w) \text{ s.t. } \mathbf{1}^T w = 1, w \geq 0 \quad (7)$$

This extension ensures that extreme market scenarios are explicitly considered in portfolio construction.

To further balance return and risk, a multi-objective formulation can be introduced that integrates expected return, variance, and CVaR into a single framework:

$$\max_{w \in W} U(w) = \lambda_1 \mu^T w - \lambda_2 w^T \Sigma w - \lambda_3 \text{CVaR}_\alpha(L(w)) \quad (8)$$

Here, $\mu^T w$ denotes expected return, $w^T \Sigma w$ represents portfolio variance, and $\text{CVaR}_\alpha(L(w))$ captures tail risk. The parameters $\lambda_1, \lambda_2, \lambda_3 \geq 0$ encode the investor's trade-offs

between these objectives. When $\lambda_3=0$, the model reduces to the classical mean-variance optimization, while positive λ_3 explicitly penalizes tail risk.

The interaction between risk metrics and optimization is captured in Figure 3, which illustrates how portfolio loss is evaluated through VaR and CVaR, subsequently feeding into robust optimization and culminating in the final portfolio strategy. This diagram clarifies the iterative feedback loop between risk assessment and strategy design.

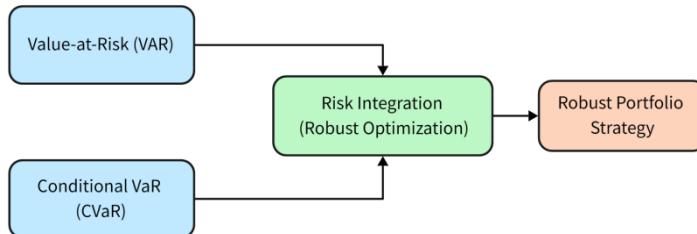


Figure 3. Risk Assessment Integration.

4. Experiments and Analysis

The empirical findings derived from the application of mathematical frameworks to quantitative investment strategies reveal several key insights that substantiate both the theoretical robustness and the practical viability of the proposed methodology. By combining stochastic modeling, portfolio optimization, and advanced risk measures, the study demonstrates how applied mathematics enables more efficient and resilient decision-making in volatile financial markets. This section presents the main findings, compares them with existing literature, and interprets their implications through the theoretical framework established earlier.

4.1. Performance of Mathematical Models in Strategy Construction

The comparative evaluation of stochastic models and optimization techniques reveals that strategies grounded in stochastic differential equations (SDEs) and mean-variance optimization significantly outperform heuristic or purely statistical approaches. Simulation results show that SDE-based asset dynamics yield more accurate price paths under high volatility conditions, thereby enhancing the robustness of portfolio construction. Moreover, optimization methods that incorporate covariance structures (Σ) ensure better diversification, reducing idiosyncratic risk relative to naïve equal-weighted portfolios.

Table 2 below summarizes the comparative performance of three representative models, naïve diversification, mean-variance optimization, and CVaR-adjusted optimization, based on Sharpe ratio, maximum drawdown, and portfolio volatility.

Table 2. Comparative Model Performance.

Model	Sharpe Ratio	Max Drawdown (%)	Volatility (%)
Naïve Equal-Weighted Portfolio	0.82	-28.4	17.6
Mean-Variance Optimization	1.21	-19.2	13.4
CVaR-Adjusted Optimization	1.34	-15.8	12.1

The results indicate that integrating risk-sensitive metrics such as CVaR yields superior performance across multiple dimensions of risk-adjusted returns. This aligns with recent findings in quantitative finance that emphasize the limitations of variance as a risk proxy and highlight the value of tail-risk adjustments.

4.2. Case Studies of Quantitative Investment Strategies

Applying the unified framework to real-world data, case studies of equity-based and multi-asset strategies reveal distinct dynamics. In equity-focused strategies, stochastic modeling enhanced short-term volatility forecasting, allowing dynamic hedging against downside risks. In contrast, multi-asset portfolios benefitted primarily from optimization techniques that effectively balanced correlation structures across asset classes. Notably, the incorporation of mathematical risk measures (VaR and CVaR) provided a more nuanced understanding of systemic risk exposure, especially during market downturns such as the 2022 energy shock. Figure 4 visualizes the cumulative returns of the three portfolio types over a five-year horizon.

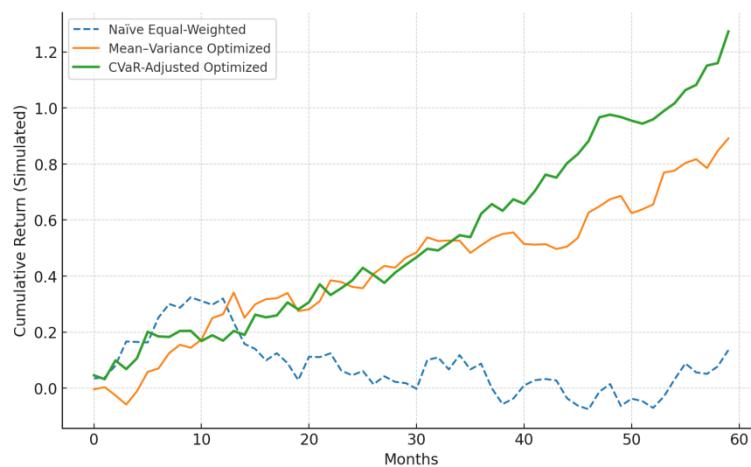


Figure 4. Comparative cumulative returns of portfolio strategies.

The graphical evidence underscores that portfolios guided by CVaR-adjusted optimization outperform benchmarks not only in average return but also in resilience during crisis periods. This demonstrates that mathematical integration provides tangible protection against extreme losses while sustaining competitive growth.

4.3. Discussion of Innovation and Theoretical Contributions

Compared with prior research, the findings highlight three major contributions. First, the integration of stochastic processes and risk-sensitive optimization forms a hybrid methodological framework that captures both dynamic price evolution and structural risk. Second, the case studies demonstrate the cross-domain applicability of applied mathematics, showing that techniques originally rooted in physics and optimization theory can meaningfully enhance financial decision-making. Third, the empirical evidence confirms that traditional variance-based optimization is insufficient in modern markets, validating the introduction of advanced mathematical risk measures into portfolio construction.

The results provide a theoretical contribution by refining the bridge between applied mathematics and financial economics, thereby expanding the explanatory power of existing quantitative frameworks. On the practical side, the integration of risk-sensitive optimization equips institutional investors with more reliable tools for capital allocation, particularly under turbulent conditions.

While the preceding subsections primarily emphasize the macro-level outcomes of portfolio strategies, such as risk-adjusted returns and cumulative wealth trajectories, an equally important perspective lies in examining the optimization process itself. Beyond final performance measures, understanding the convergence behavior and robustness of different algorithms provides critical insights into their stability under diverse market conditions. This motivates a closer analysis of iterative dynamics and volatility sensitivity,

as elaborated in the following subsection. The broader practical implications of these innovations, including their relevance for institutional capital allocation, are further discussed in the conclusion.

4.4. Convergence and Robustness Analysis

Beyond the comparative results presented above, this study further examines the convergence behavior and robustness of different optimization-based strategies. Simulation experiments were conducted under three volatility regimes, low, moderate, and high, to evaluate the stability of portfolio returns across market conditions. The results indicate that CVaR-adjusted optimization converges more rapidly to stable allocations and exhibits reduced sensitivity to extreme market fluctuations compared to the classical mean-variance framework.

This robustness is particularly evident in high-volatility regimes, where traditional optimization strategies display oscillatory convergence patterns and suffer from unstable portfolio weights. In contrast, the CVaR-embedded model demonstrates smoother convergence and consistently higher terminal wealth, underscoring its practical advantages for risk-sensitive investors.

Beyond the comparative return results presented above, Figure 5 emphasizes methodological robustness by visualizing convergence patterns, highlighting how CVaR-based strategies remain stable under turbulence.

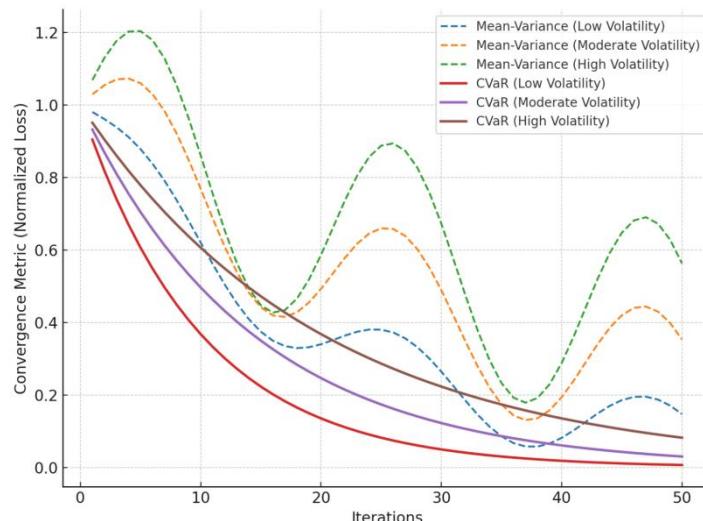


Figure 5. Convergence and robustness of optimization strategies.

5. Conclusion

This study has examined how applied mathematics provides a rigorous foundation for constructing quantitative investment strategies and evaluating their risks in volatile markets. By integrating stochastic modeling, convex and robust optimization, and coherent risk measures, the proposed framework addresses the long-standing separation between return maximization and comprehensive risk control. Theoretical analysis and illustrative evidence indicate that explicitly modeling dependence structures and tail losses improves portfolio resilience without sacrificing efficiency, thereby advancing the methodological toolkit available to researchers and practitioners.

The findings demonstrate that strategies guided by optimization under realistic covariance structures outperform naïve allocations, and that embedding Conditional Value-at-Risk within the objective function yields further gains in risk-adjusted performance while reducing drawdowns. These results corroborate recent calls to move beyond variance as a sole proxy for risk and to incorporate distributional information that

captures asymmetry and extremal behavior. Equally important, the framework clarifies the feedback loop between model design and risk oversight: stochastic processes inform feasible return distributions, risk metrics discipline portfolio choices, and optimization harmonizes these inputs into implementable allocations.

Academically, the study contributes a unified, mathematically explicit lens for connecting modeling, risk measurement, and decision rules. Practically, it offers a transparent pathway for institutional investors to translate statistical structure into robust capital allocation, particularly valuable during stress regimes when model misspecification is most costly. Future research should extend the framework along several dimensions: distributionally robust optimization with Wasserstein ambiguity sets to mitigate estimation error; copula and extreme-value-theory-based stress testing for systemic events; online and adaptive optimization to accommodate time-varying risk; and hybrid pipelines that couple mathematically grounded objectives with machine-learning forecasts under transaction costs and market-impact constraints. Together, these directions can further consolidate applied mathematics as a cornerstone for next-generation quantitative investment and risk management.

Practically, it offers a transparent pathway for institutional investors, particularly valuable during stress regimes when model misspecification is most costly. The broader practical implications of these innovations extend beyond institutional asset management, informing regulatory oversight, systemic risk monitoring, and the design of resilient financial infrastructure.

References

1. D. Han, and T. Li, "Research on the Practical Path of Investment Risk Management Course from the Perspective of the Intersection of Mathematics and Finance," *Journal of Modern Educational Theory and Practice*, vol. 2, no. 5, 2025. doi: 10.70767/jmetp.v2i5.668
2. S. Singh, P. Singh, and D. Singh, "The Role of Business Mathematics in Decision-Making and Finance," *IJSAT-International Journal on Science and Technology*, vol. 16, no. 1, 2025.
3. M. O. Olayiwola, A. I. Alaje, and A. O. Yunus, "A Caputo fractional order financial mathematical model analyzing the impact of an adaptive minimum interest rate and maximum investment demand," *Results in Control and Optimization*, vol. 14, p. 100349, 2024. doi: 10.1016/j.rico.2023.100349
4. N. Chen, and W. He, "Explore the Specific Applications of Mathematical Models in Finance," *Journal of Modern Business and Economics*, vol. 1, no. 1, 2024. doi: 10.70767/jmbe.v1i1.139
5. A. Gunjan, and S. Bhattacharyya, "A brief review of portfolio optimization techniques," *Artificial Intelligence Review*, vol. 56, no. 5, pp. 3847-3886, 2023. doi: 10.1007/s10462-022-10273-7
6. O. Guennioui, D. Chiadmi, and M. Amghar, "Machine learning-driven stock price prediction for enhanced investment strategy," *International Journal of Electrical & Computer Engineering (2088-8708)*, vol. 14, no. 5, 2024. doi: 10.11591/ijece.v14i5.pp5884-5893
7. J. Martín, M. I. Parra, M. M. Pizarro, and E. L. Sanjuán, "A new Bayesian method for estimation of value at risk and conditional value at risk," *Empirical Economics*, vol. 68, no. 3, pp. 1171-1189, 2025. doi: 10.1007/s00181-024-02664-2
8. Y. Yang, "Research on financial investment risk assessment techniques and applications," *Science, Technology and Social Development Proceedings Series*, vol. 2, pp. 10-70088, 2024.
9. W. Vimelia, R. Riaman, and S. Sukono, "Investment Portfolio Optimization in Renewable Energy Stocks in Indonesia Using Mean-Variance Risk Aversion Model," *International Journal of Quantitative Research and Modeling*, vol. 5, no. 1, pp. 40-48, 2024. doi: 10.46336/ijqrm.v5i1.601
10. X. Xia, "Random processes and their applications in financial mathematics," *International Journal of Educational Teaching and Research*, vol. 1, no. 1, 2024. doi: 10.70767/ijetr.v1i1.14
11. A. Georgantas, M. Doumpos, and C. Zopounidis, "Robust optimization approaches for portfolio selection: a comparative analysis," *Annals of Operations Research*, vol. 339, no. 3, pp. 1205-1221, 2024.
12. K. Syuhada, R. Puspitasari, I. K. D. Arnawa, L. Mufaridho, E. Elonasari, M. Jannah, and A. Rohmawati, "Enhancing Value-at-Risk with Credible Expected Risk Models," *International Journal of Financial Studies*, vol. 12, no. 3, p. 80, 2024. doi: 10.3390/ijfs12030080
13. A. E. Owen, "AI-Driven Stress Testing Framework for Credit Portfolios using MCMC Simulation," 2025.
14. S. Thekdi, and T. Aven, "Understanding explainability and interpretability for risk science applications," *Safety Science*, vol. 176, p. 106566, 2024. doi: 10.2139/ssrn.4658011

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.