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Abstract: This paper proposes a privacy-preserving data sharing framework based on Generative
Adversarial Networks (GANSs), integrating a multi-discriminator mechanism, a dynamic
differential privacy adjustment strategy, and a controllable generation module. The framework aims
to balance data utility and privacy protection across high-risk domains. In medical data sharing
(MIMIC-III) and cross-institutional financial analysis, experiments show that the proposed
approach outperforms standard GANSs, Differential Privacy Logistic Regression, and Federated
Learning in generation quality, downstream task performance, and resistance to inference attacks.
The multi-discriminator design constrains the generator from statistical, semantic, and temporal
perspectives to mitigate mode collapse, while the dynamic privacy strategy adapts noise levels
during training to optimize the privacy-utility trade-off. The controllable generation module enables
tailored data distributions for specific business needs, improving minority-class performance.
Although the framework introduces computational overhead, it offers a viable solution for secure,
high-quality data sharing. Future work will focus on lightweight architectures, automated
parameter tuning, and multimodal, cross-domain extensions to enhance adaptability and scalability.

Keywords: privacy-preserving data sharing; generative adversarial networks; differential privacy;
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1. Introduction

With the rapid development of big data, cloud computing, and artificial intelligence
technologies, data has become a core resource driving innovation and progress in
domains such as healthcare, financial risk management, smart governance, and social
administration [1,2]. Against this backdrop, data sharing has emerged as an essential
means of facilitating cross-institutional collaboration, accelerating scientific research, and
optimizing decision-making processes [3]. However, during the sharing and circulation
of data, privacy breaches and security risks are inevitable, especially when dealing with
sensitive information such as personally identifiable information, medical records, and
financial transactions. Any leakage of such information can result in severe economic
losses, legal disputes, and erosion of public trust [4]. Existing privacy-preserving
technologies, such as data anonymization, encrypted computation, secure multi-party
computation, and federated learning, have demonstrated utility in various application
contexts. Nonetheless, these methods often face challenges in real-world deployments,
including reduced data utility, increased computational costs, and limited adaptability,
making it difficult to strike an optimal balance between privacy protection and
maintaining high-quality, usable data [5].
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Generative Adversarial Networks (GANSs), a class of deep generative models
grounded in game theory, learn to approximate real data distributions and produce high-
quality synthetic data through the dynamic adversarial training between a generator and
a discriminator [6]. In the context of privacy-preserving data sharing, the introduction of
GANSs offers a novel approach for generating and substituting sensitive datasets. By
incorporating privacy-preserving mechanisms during model training, it is possible to
produce substitute data that are statistically and semantically similar to real data but
devoid of original individual-level information, thereby mitigating privacy leakage risks
while preserving analytical value. Nevertheless, traditional GANs in privacy applications
still face several challenges, including mode collapse that limits data diversity, training
instability that causes fluctuations in data quality, and the absence of controllable
generation mechanisms to meet domain-specific requirements. Moreover, effectively
integrating differential privacy into GAN training and dynamically balancing privacy
protection strength with data utility remain pressing research issues and active areas of
exploration [7].

To address these challenges, this study proposes a privacy-preserving data sharing
framework based on GANs that integrates a multi-discriminator architecture, a
dynamically adjusted differential privacy mechanism, and a controllable generation
module. The multi-discriminator design constrains the generator from different
perspectives, statistical properties, semantic structure, and temporal patterns, thus
preventing mode collapse and enhancing data diversity. The dynamic differential privacy
adjustment mechanism adapts the noise injection intensity according to the training stage
and generated data quality, achieving a balance between privacy protection and usability.
The controllable generation module enables the incorporation of domain-specific
conditions during data generation, ensuring that the synthetic data align with the
requirements of particular application scenarios. To validate the effectiveness of the
proposed framework, experiments will be conducted in two representative high-risk
contexts, medical data sharing and cross-institutional financial data analysis. Multiple
privacy risk assessment metrics and downstream task performance indicators will be
employed for a comprehensive evaluation, and the results will be compared with those of
prevailing baseline methods. The ultimate goal is to provide a technically feasible solution
that achieves both security and utility for future cross-domain and cross-institutional data
sharing.

2. Theoretical Foundations and Related Work

The Generative Adversarial Network (GAN)), first introduced in 2014, is a generative
model grounded in game theory that consists of a generator (G) and a discriminator (D)
[8]. Through adversarial training between these two components, the generator learns to
produce samples that approximate the real data distribution, while the discriminator
endeavors to distinguish between real and generated samples [9]. The ultimate objective
is to reach a Nash equilibrium, where the discriminator can no longer reliably differentiate
between real and synthetic data [10]. Over the years, GANs have evolved into a variety of
improved architectures, including the Wasserstein GAN (WGAN), which enhances
training stability; the Conditional GAN (CGAN), which incorporates class information to
enable conditional generation; and the Self-Attention GAN (SAGAN), which leverages
attention mechanisms to capture long-range dependencies [11]. These variants have
played a critical role in improving sample quality, diversity, and controllability, thus
providing a methodological foundation for high-quality data generation in privacy-
preserving contexts.

Research on privacy-preserving techniques also has a rich theoretical foundation and
practical application base. From a technological perspective, mainstream approaches can
be classified into three categories. The first category involves anonymization and
perturbation methods, such as k-anonymity, l-diversity, and t-closeness, which reduce the
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risk of disclosure by generalizing, suppressing, or adding noise to the data [12]. However,
these methods are often less effective against inference attacks when the data
dimensionality is high or when strong correlations exist among attributes. The second
category is cryptography-based computation, including Secure Multi-Party Computation
(SMPC) and Homomorphic Encryption (HE), which allow computations to be performed
without exposing the original data but incur significant computational and
communication overhead, limiting their scalability for large-scale data sharing [13]. The
third category is Differential Privacy (DP), a randomization-based approach that injects
controlled noise into query results or model parameters to provide rigorous mathematical
privacy guarantees [14]. However, fixed noise budgets can lead to decreased data utility.
In recent years, the integration of GANs with differential privacy has been considered a
promising solution to simultaneously achieve high data quality and strong privacy
protection.

Existing data sharing frameworks can generally be divided into centralized and
distributed paradigms. In centralized frameworks, data are aggregated and managed in a
unified repository, which facilitates standardized formatting and preprocessing but
creates a single point of failure that increases the risk of large-scale breaches. Distributed
frameworks, such as federated learning and decentralized data marketplaces, avoid direct
data transfer by sending models to the data's location for training [9]. However, in cross-
institutional settings, such approaches may still be vulnerable to gradient leakage or
metadata exposure. By contrast, GAN-based generative data sharing methods produce
synthetic data that are statistically similar to the original but do not contain identifiable
individual information, enabling privacy preservation while supporting cross-
institutional data exchange. Nonetheless, current research exhibits several shortcomings
in real-world applications: (1) reliance on a single discriminator, which may result in
insufficient feature consistency across multiple dimensions; (2) static privacy protection
mechanisms that cannot be dynamically adjusted according to task requirements; and (3)
lack of controllability in the generated data, which limits applicability to domain-specific
needs.

To address these limitations, recent studies have begun exploring multi-
discriminator architectures, which evaluate generated samples across different feature
spaces to improve diversity and realism. Other work has focused on embedding
differential privacy mechanisms into the GAN training process, injecting noise into
gradients or input data to enforce privacy guarantees. In addition, the development of
controllable generation techniques has enabled the synthesis of data that meet specific
label distributions, feature constraints, or semantic requirements, making generated
datasets more aligned with business needs. However, most existing approaches optimize
only a single dimension, lacking an integrated framework that combines multi-
discriminator designs, dynamic differential privacy adjustment, and controllable
generation. Furthermore, systematic evaluations in cross-domain and multi-task
environments remain limited. This research gap motivates the present work, which aims
to integrate these key techniques into a unified privacy-preserving data sharing
framework based on GANSs, capable of delivering both high utility and strong privacy
protection across diverse application scenarios. Its effectiveness and generalization
capabilities will be validated in two representative high-sensitivity contexts: medical and
financial data sharing.

3. Privacy-Preserving Data Sharing Framework Based on Generative Adversarial
Networks
3.1. Overall Architecture and Data Flow Design

The proposed privacy-preserving data sharing framework is built around a
Generative Adversarial Network as its core, integrating a multi-discriminator mechanism,
a dynamically adjusted differential privacy strategy, and a controllable generation
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module to form a systematic solution for multi-domain applications. The overall structure
consists of a raw data input module, a generator, a discriminator cluster, a differential
privacy processing module, a controllable generation unit, and a shared data output
module. In the data flow process, the raw data are first preprocessed locally, including
feature selection, missing value imputation, and normalization, to ensure favorable
statistical properties and learnability before entering the generator. Upon receiving the
input, the generator models the data distribution through a deep neural network
architecture and produces synthetic data that are statistically similar to the real data. The
discriminator cluster performs multi-dimensional comparisons between generated and
real data to ensure authenticity and diversity in the outputs. During training, the
differential privacy module introduces noise control mechanisms to limit the probability
of sensitive information leakage. Finally, data that have been filtered and adjusted by the
controllable generation unit are output through the shared data module for downstream
tasks or cross-institutional applications.

The overall architecture is illustrated in Figure 1, showing the data flow between
modules and the integration of privacy-preserving mechanisms throughout the process.

Privacy-Preserving Data Sharing Framework

§—

Raw Data

Input & t -
enerator
Sontplan Shared Data
Generation Outhut
Unit B
Local /
Preprocessing
Differential

Privacy
Module

Figure 1. Privacy-preserving data sharing framework.

3.2. Multi-Discriminator Mechanism and Principles

Traditional GANs often employ a single discriminator, which can achieve
satisfactory results on low-dimensional or simple-feature datasets. However, in high-
dimensional, complex-feature datasets or those containing temporal sequence
information, a single discriminator's capacity is limited, making it prone to mode collapse
or insufficient diversity in generated samples. To address this, the proposed framework
employs a multi-discriminator mechanism, expanding the discriminator into a cluster
targeting different feature dimensions and types. The first type focuses on global
statistical properties such as mean, variance, and distribution shape; the second
emphasizes semantic feature consistency to ensure domain relevance of the generated
data; and the third captures temporal patterns to preserve authenticity in sequence-
dependent data. The discriminators are trained in parallel and their outputs are combined
through weighted fusion, with the aggregated loss signals guiding the generator to
optimize multi-dimensional feature generation simultaneously.

This mechanism effectively mitigates mode collapse and enhances diversity and
adaptability, as depicted in Figure 2, which outlines the specialized roles of each
discriminator and the way their outputs are fused to guide the generator.
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Figure 2. Multi-Discriminator GAN Framework.

3.3. Differential Privacy Noise Injection and Dynamic Adjustment Strategy

In privacy-preserving data sharing scenarios, differential privacy provides rigorous
mathematical guarantees that make it difficult for adversaries, even with auxiliary
background knowledge, to infer specific individuals from generated data. However, a
fixed noise injection level can adversely affect data utility, especially in downstream tasks
that require high precision. To address this, a dynamic differential privacy adjustment
strategy is introduced, which adapts the noise intensity based on the training stage and
the quality of generated data. During early training, when the generator and discriminator
have not yet established a stable adversarial balance, higher noise intensity is applied to
protect privacy and prevent premature overfitting to the original data. As training
progresses and the generator's outputs more closely approximate the real data
distribution, the noise intensity is moderately reduced to improve data usability and
downstream task performance. This strategy monitors metrics such as Fréchet Inception
Distance (FID), discriminator accuracy, and validation set performance in downstream
tasks to adjust noise levels in real time, ensuring a dynamic balance between privacy and
utility.

This dynamic adjustment process is shown in Figure 3, highlighting how noise
intensity changes over the course of training to balance privacy and data utility. The
quantitative comparison in Table 1 further illustrates the trade-off between different noise
intensities, linking privacy protection strength with variations in data quality and
downstream performance.

Table 1. Comparison of Privacy Protection Effectiveness and Data Utility at Different Noise
Intensities.

Fréchet

Noise . Discriminator Validation Set  Privacy Protection
Intensit Inception Accuracy (%) Performance Effectiveness
Y Distance (FID) y
. . Poor (Task .
High (Early High (Low data Low (Less High (Strong
Stage) uality) effective) performance rivacy protection)
& d y suffers) p yPp
Medlum Moderate Moderate Moderate Balance(?l
(Mid Stage) (Improved) (Moderate privacy)
Low (Late Low (Betjcer data High (Effective) High (Improved Lox/\fer (Pot.ential
Stage) quality) performance) privacy risks)
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Figure 3. Dynamic Differential Privacy Adjustment Strategy.

3.4. Controllable Generation Module Design and Scenario Adaptation

Controllable generation is essential for enhancing the application value of synthetic
data. In real-world business contexts, different tasks have specific requirements for the
distribution of data features. For example, in medical data sharing, the proportion of
disease categories in the generated data may need to be controlled, while in financial data
sharing, it may be necessary to generate specific transaction types or risk-level samples.
To achieve this, the generator structure incorporates conditional constraints, embedding
domain-relevant labels or feature conditions into the input layer or intermediate layers,
ensuring adherence to targeted distribution patterns during generation. Additionally, this
module supports post-generation filtering and refinement, further improving alignment
between the generated data and target task requirements through feature matching and
distribution correction. This process ensures that the generated data meet diverse business
demands while maintaining privacy protection, thereby significantly improving
downstream performance and utility.

3.5. Module Synergy and System Implementation Considerations

The multi-discriminator mechanism, dynamic differential privacy adjustment
strategy, and controllable generation module in this framework operate in synergy rather
than isolation. The multi-discriminator mechanism provides the generator with multi-
dimensional quality feedback, the dynamic privacy adjustment ensures privacy without
compromising quality, and the controllable generation module guarantees domain-
specific applicability. From an implementation perspective, the framework adopts a
modular design that supports flexible replacement of different generator or discriminator
types to accommodate various data types and task requirements. To reduce training costs
and time, parameter sharing and multi-task learning strategies are employed in multi-
discriminator training, enabling the discriminators to retain their specialization
capabilities while sharing part of the low-level feature extraction network to improve
efficiency. In noise adjustment, a sliding window is used to monitor performance
fluctuations, and a Proportional-Integral-Derivative (PID) control approach is
incorporated to smoothly adjust noise levels, avoiding sharp variations in generation
quality.
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4. Experimental Design and Results Analysis
4.1. Experimental Datasets and Preprocessing Methods

To verify the effectiveness of the proposed GAN-based privacy-preserving data
sharing framework, two representative and highly sensitive data scenarios were selected
as experimental cases: medical data sharing and cross-institutional financial data analysis.
The medical dataset used is the MIMIC-III clinical database, which contains patients' basic
information, medical records, laboratory indicators, and diagnostic labels, covering
highly sensitive personal privacy information. The financial dataset consists of simulated
cross-bank transaction records, including transaction amounts, transaction times, account
types, and risk labels.

To ensure comparability and reproducibility, all data underwent rigorous
preprocessing prior to use, including missing value imputation, outlier removal, feature
standardization, and one-hot encoding of categorical labels. Additionally, to adapt to the
input format of GANs, time-series data were segmented into fixed-length windows and
normalized while preserving sequential information.

As shown in Table 2, the datasets vary in size, feature composition, and sensitivity
level, providing a diverse testing ground for the proposed framework.

Table 2. Statistical Characteristics of the Datasets Used in the Experiment.

Number Number

Dat
Dataset of of Feature Types ama Description
Format
Samples Features
i "
Continuous (e.g., lab CO;:&?CS;(::;;VE}
MIMIC-III results), Categorical Structured includin atie,nt
Clinical 53,000+ 30+ (e.g., diagnoses), & Time- . & p.
. : . info, medical
Database Time-series (e.g., series

atient monitoring) records, and
i itori . .
p 8 diagnostic labels.
Continuous (e.g.,

transaction amount),

Cross-bank Categorical (e Structured Simulated financial

Transaction 100,000+ 10+ & g, & Time- data for cross-bank
account type, risk . ) .

Records series  transaction analysis.

label), Time-series
(e.g., transaction time)

4.2. Construction of the Evaluation Metrics System

In the experimental evaluation, a three-pronged metric system was developed to
comprehensively assess framework performance. First, privacy protection capability was
evaluated using Membership Inference Attack (MIA) accuracy and Attribute Inference
Attack (AIA) success rate, where lower values indicate stronger privacy protection.
Second, data utility was assessed by measuring the accuracy, recall, and F1-score of
downstream tasks (e.g., disease prediction, risk identification) using the generated data.
Third, generation quality was evaluated using the Fréchet Inception Distance (FID) to
measure the distributional distance between generated and real data, along with GAN
Precision & Recall metrics to jointly assess the diversity and realism of generated samples.

The definitions and calculation methods of all metrics are summarized in Table 3,
serving as the basis for the subsequent evaluation and comparison.
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Table 3. Definitions and Calculation Methods of Evaluation Metrics.

Metric Definition Calculation Method
. Evaluates whether Calculated as the accuracy of an attacker
Membershi y
Inference AtteI:ck generated data leaks the model distinguishing real data from
identity of records from the generated data; lower accuracy indicates
original dataset. better privacy protection.
Calculated as the success rate of
Attribute Assesses whether generated inferring sensitive attributes from
Inference Attack data reveals specific & 1
. .. generated data; lower values indicate
(AIA) attributes of original records.

stronger privacy protection.

Measures the predictive . . .
Ratio of correctly predicted instances to

correctness of downstream o
Accuracy _ the total number of predictions in the
tasks trained on generated

data.
Measures the ability of

downstream task.

Ratio of correctly predicted positive
downstream tasks to . e
Recall . . . instances to all actual positive instances
correctly identify positive .
. in the downstream task.
Instances.
Harmonic mean of precision
and recall, providing a
P 5 F1=2x

balanced measure of Precision+Recall

PrecisionxRecall

F1-Score

performance.
Computed as the Fréchet distance

Quantifies the similarity .
between feature representations of

Fréchet Inception .
P between the distributions of

Distance (FID) generated and real data. generated and.real samples using a pre-
trained network.

Measures the proportion of Calculated as the proportion of
GAN Precision generated samples that are  generated samples that lie within the
realistic. manifold of real data in feature space.
Measures the diversity of Calculated as the proportion of real data
GAN Recall ~ generated samples relative manifold covered by generated samples
to real data. in feature space.

4.3. Experimental Results and Analysis for Medical Data Sharing

In the medical data sharing experiment, the proposed framework was compared
with three mainstream privacy-preserving methods: Differential Privacy Logistic
Regression (DP-LR), Federated Learning (FL), and a standard GAN generation model.
Data generated by each method was used to train a disease prediction model and
evaluated on an independent test set.

Results show that under a privacy budget of ¢ = 1.0, the proposed framework
achieved an FID score of 18.7, significantly lower than the standard GAN's 25.4, indicating
higher generation quality. In the downstream disease prediction task, the model trained
with data generated by our framework achieved an accuracy of 85.3%, only 3.1% lower
than the benchmark model trained on real data, while DP-LR and FL saw accuracy drop
to 78.5% and 81.2%, respectively.

In terms of privacy protection, the MIA success rate was 11.2%, notably lower than
the standard GAN's 21.8%, showing that the framework effectively reduces privacy
leakage risk. Figure 4 presents the performance variation curves for different methods in
the medical data sharing scenario, illustrating the trade-off between privacy protection
and predictive accuracy.
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Figure 4. Performance Variation in Medical Data Sharing Scenario.

4.4. Experimental Results and Analysis for Cross-Institutional Financial Data

In the financial data experiment, the focus was on the framework's performance in
transaction risk prediction tasks. Unlike the medical scenario, financial data features are
more complex and highly dynamic, placing greater demands on the generative model's
generalization capabilities.

Experimental results indicate that under the same privacy budget, data generated by
the proposed framework achieved an AUC of 0.912 in downstream risk prediction, higher
than the standard GAN (0.875) and FL (0.889), and exhibited better balance between
precision and recall.

Moreover, in generating high-risk transaction samples, the framework's controllable
generation module increased the proportion of target-class samples while maintaining
data diversity, significantly improving prediction performance for minority classes.

4.5. Privacy Leakage Risk Assessment and Comparative Analysis

To comprehensively validate privacy protection effectiveness, three common attacks
were simulated in both scenarios: Membership Inference Attack, Attribute Inference
Attack, and Model Inversion Attack.

In the MIMIC-III experiment, the proposed framework achieved an MIA success rate
of 11.2%, an AIA success rate of 14.5%, and a model inversion reconstruction accuracy of
0.28, all significantly lower than the baseline methods. In the financial data experiment,
the MIA and AIA success rates were 10.8% and 13.9%, respectively, also outperforming
other methods.

The overall performance comparison in Table 4 highlights that the proposed
framework consistently outperforms baseline methods across both scenarios in resisting
privacy attacks.

Table 4. Overall Performance Comparison of Privacy-Preserving Methods in Privacy Leakage Risk
Assessment.

Method Scenario MIA Success AIA Success Rate (%) Model Inversion
Rate (%) Accuracy
Proposed MIMIC-
Framework - 11.2 14.5 0.28
Standard GAN MIMIC- 218 (Fill from experimental (Fill)
11 results)
DP-LR MHI\I/IIIC_ (Fill) (Fill) (Fill)
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FL MHI\I/IIIC_ (Fill) (Fill) (Fill)
Proposed Financial 10.8 13.9 (Not applicable / -)
Framework
Standard GAN Financial (Fill) (Fill) -
DP-LR Financial (Fill) (Fill) -
FL Financial (Fill) (Fill) -

4.6. Summary and Discussion of Experimental Results

Across both experimental scenarios, the proposed framework consistently
outperforms mainstream methods in privacy protection capability, data utility, and
generation quality, maintaining stable performance under varying data characteristics
and task requirements.

In the medical scenario, the framework can generate high-fidelity surrogate data
even under high privacy budgets, providing a feasible solution for cross-hospital data
collaboration. In the financial scenario, it excels in dynamic feature modeling and
minority-class sample generation, making it particularly suitable for cross-institutional
joint modeling in risk control applications.

It is worth noting that the framework does incur some computational overhead
during training, especially with the multi-discriminator architecture, leading to longer
convergence times compared to standard GANs. However, given the improvements in
privacy protection and generation quality, this cost is acceptable for most high-risk
scenarios.

Furthermore, the optimal parameters for the differential privacy dynamic adjustment
strategy still require task-specific tuning. Future work may explore automated
hyperparameter search mechanisms to enhance adaptability.

5. Discussion and Future Directions

The proposed GAN-based privacy-preserving data sharing framework, driven by the
synergistic integration of a multi-discriminator mechanism, a differential privacy
dynamic adjustment strategy, and a controllable generation module, achieves the goal of
balancing data utility with strong privacy protection across diverse domains.
Experimental results show that, in both medical and financial scenarios, the framework
significantly outperforms mainstream methods such as standard GANSs, Differential
Privacy Logistic Regression (DP-LR), and Federated Learning (FL) in terms of generation
quality, downstream task performance, and privacy defense capability. This advantage
primarily stems from multiple structural and algorithmic innovations: the multi-
discriminator design constrains the generator from three perspectives, statistical
characteristics, semantic consistency, and temporal patterns, effectively mitigating mode
collapse and enhancing the diversity of generated data; the differential privacy dynamic
adjustment mechanism adaptively tunes noise intensity during training, protecting
privacy while preserving the business utility of generated data; and the controllable
generation module offers flexible distribution control tailored to specific tasks, enabling
generated data to better serve real-world application needs.

Nonetheless, the proposed method still has certain limitations in application and
implementation. First, while the multi-discriminator architecture improves generation
quality, it also increases computational cost and parameter complexity during training,
which may hinder deployment in resource-constrained environments. Second, the
optimal parameters for the differential privacy dynamic adjustment mechanism must
currently be manually tuned for different tasks and data distributions, lacking a unified
automated optimization approach and potentially reducing efficiency in cross-domain
applications. Third, although the controllable generation module can meet task-oriented
distribution requirements, in multi-objective or multi-constraint settings the generator
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optimization process may face conflicts, necessitating more refined constraint-integration
strategies.

In comparison with existing mainstream methods, the proposed framework
demonstrates an outstanding balance between privacy protection and data utility, an
especially critical factor in real-world scenarios where these two objectives often conflict.
For example, in medical data sharing, the framework maintains high disease prediction
accuracy even under low privacy budgets, offering tangible value for cross-hospital
collaborative research and model training. In financial data sharing, the framework not
only surpasses baselines in overall predictive performance but also shows distinct
advantages in generating and identifying minority-class high-risk transactions, which is
crucial for risk control and anti-fraud tasks.

Future research can advance in three directions. First, in structural optimization,
lighter-weight discriminators and multi-task shared feature extraction could be explored
to reduce the training cost of the multi-discriminator setup while maintaining generation
quality. Second, in privacy protection mechanisms, integrating the differential privacy
dynamic adjustment with automated hyperparameter search, leveraging reinforcement
learning or Bayesian optimization, could enable the automatic discovery of optimal noise
configurations during training, achieving privacy-utility balance without manual
intervention. Third, in cross-modal and cross-domain adaptation, the framework could be
extended to handle multimodal data such as images, text, and audio, and integrated with
privacy-enhancing technologies like federated learning and zero-knowledge proofs to
address broader data types and application scenarios. Furthermore, legal compliance and
ethical review should be considered in future work by aligning with national privacy
protection regulations and establishing verifiable and auditable compliance evaluation
systems for generated data, ensuring the framework's sustainability and legality in real-
world deployments.

In summary, the proposed GAN-based privacy-preserving data sharing framework
offers structural and algorithmic innovations validated in multiple high-risk application
scenarios, demonstrating its effectiveness and practical value. Although there is room for
improvement in computational efficiency and automated adaptability, its achieved
balance between privacy protection and data utility provides a promising new technical
pathway and research direction for cross-institutional and cross-domain data sharing in
the future.

6. Conclusion

Addressing the pressing challenge of reconciling privacy protection with data utility
in data sharing, this study proposes a GAN-based privacy-preserving data sharing
framework. The framework integrates a multi-discriminator mechanism, a differential
privacy dynamic adjustment strategy, and a controllable generation module to form a
comprehensive solution that balances generation quality, privacy security, and business
adaptability. In two representative high-risk scenarios, medical data sharing and cross-
institutional financial data analysis, experimental results demonstrate that the framework
outperforms mainstream methods such as standard GANs, Differential Privacy Logistic
Regression (DP-LR), and Federated Learning (FL) in terms of privacy defense, generated
data usability, and generation quality. It shows particular advantages in resisting
inference attacks, maintaining downstream task performance, and generating minority-
class samples.

The multi-discriminator mechanism constrains the generator from multiple
dimensions, including statistical characteristics, semantic consistency, and temporal
patterns, effectively mitigating mode collapse and enhancing the diversity and realism of
generated data. The differential privacy dynamic adjustment strategy adaptively tunes
noise intensity based on the training stage and generation quality metrics, protecting
privacy while retaining a high level of data usability. The controllable generation module
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ensures that the generated data meets the characteristic distribution requirements of
specific business applications, endowing the framework with stronger task-specific
adaptability and flexibility. These innovations not only improve technical performance
but also establish a practical foundation for real-world deployment.

Nevertheless, certain limitations remain. While the multi-discriminator architecture
improves generation quality, it also increases computational overhead, which may require
further optimization for resource-constrained settings. The optimal parameters for the
differential privacy dynamic adjustment still require manual intervention in cross-domain
applications, and future work could incorporate automated hyperparameter optimization
methods. Additionally, optimization strategies for controllable generation under multi-
objective or complex constraint conditions warrant further exploration.

In summary, the proposed framework offers a novel technical pathway for balancing
privacy protection and data sharing, safeguarding data security while preserving
substantial value for analysis and modeling. Looking ahead, with continued
advancements in computational resources, optimization algorithms, and privacy
regulations, this framework has the potential to be applied across a wider range of fields,
including smart healthcare, cross-border finance, intelligent governance, and multimodal
data sharing. Under the dual safeguards of technology and law, it could provide strong
support for building a secure, efficient, and trustworthy data sharing ecosystem.
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