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Abstract: This study addresses the evolving challenges of portfolio risk management in the era of
Artificial Intelligence (AI), using NVIDIA Corporation (NVDA) as a representative high-tech asset.
We propose an integrated Al-augmented framework that combines a hybrid Long Short-Term
Memory (LSTM)-GARCH (1,1) model with alternative data, including macroeconomic indicators
and financial sentiment derived from news and social media. Trained on daily data from 2018 to
2022 and evaluated out-of-sample in 2023, the hybrid model significantly outperforms ARIMA,
standalone LSTM, and GARCH benchmarks in forecasting both NVDA returns (MAE: 1.72%) and
conditional volatility (Mincer-Zarnowitz R? 0.68). Risk analysis based on model outputs reveals
NVDA's pronounced exposure to semiconductor supply chain disruptions, regulatory shifts, and
tech-sector sentiment. A dynamic portfolio strategy that adjusts NVDA allocation according to
predicted volatility achieves a higher Sharpe ratio (3.38 vs. 2.95) and lower maximum drawdown
(=28.5% vs. —42.1%) than a static benchmark. Our findings demonstrate that adaptive, AI-driven risk
models are essential for managing the non-linear dynamics and tail risks characteristic of Al-centric
investments.
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Accepted: 11 January 2026 The dawn of the Artificial Intelligence (AI) era has catalyzed a profound
Published: 18 January 2026 transformation across global industries, with the financial sector experiencing one of its

most significant disruptions. Al is no longer merely a tool for automation; it has become
a primary driver of corporate strategy, market valuation, and systemic risk [1]. Nowhere

is this more evident than in the meteoric rise of companies positioned at the epicenter of
the Al hardware and software ecosystem. NVIDIA Corporation (NVDA) stands as a
publication under the terms and ~ quintessential case study, a company that transitioned from a graphics processing unit
conditions of the Creative Commons  (GPU) specialist to the de facto engine powering the global Al revolution [2]. Its stock
Attribution  (CC  BY) license  price, reflecting immense investor optimism about Al's future, has exhibited
(https://creativecommons.org/license  extraordinary growth coupled with pronounced volatility, presenting unique challenges
s/by/4.0/). and opportunities for portfolio managers [3].

Traditional portfolio risk management frameworks, often rooted in Modern Portfolio
Theory (MPT) and reliant on historical variance-covariance matrices and linear factor
models (e.g., CAPM, Fama-French), struggle to adequately capture the dynamics of such
Al-centric assets [4]. These models frequently assume normally distributed returns, linear
relationships, and stable correlations, assumptions demonstrably violated in the context
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of disruptive technological innovation characterized by hype cycles, rapid paradigm
shifts, network effects, and sentiment-driven price surges [5]. The "black swan" events
associated with technological breakthroughs or regulatory crackdowns can induce tail
risks that standard Value-at-Risk (VaR) measures fail to anticipate [6].

Consequently, there is an urgent need to develop and validate next-generation risk
management methodologies that leverage the very technologies, Al and Machine
Learning (ML), driving the market changes they seek to manage. ML algorithms,
particularly deep learning architectures like Recurrent Neural Networks (RNNs) and their
variants (e.g.,, LSTMs), excel at identifying complex, non-linear patterns and temporal
dependencies in high-dimensional data, making them ideally suited for modeling the
intricate behavior of high-tech stocks like NVDA [7]. Furthermore, integrating alternative
data sources, such as real-time news sentiment and social media chatter, provides crucial
forward-looking signals that traditional financial data often lags.

This paper addresses this critical gap by presenting a comprehensive investigation
into portfolio risk management for Al-driven high-tech investments, using NVIDIA as
our primary empirical subject. Our core contributions are threefold: (1) Framework
Development: We design and implement an integrated risk analytics framework that
synergistically combines deep learning for price prediction with econometric models for
volatility forecasting, augmented by alternative data. (2) Empirical Validation: We
rigorously test our hybrid LSTM-GARCH model against established benchmarks using
out-of-sample forecasting, demonstrating superior predictive power for both NVDA's
price levels and its conditional volatility. (3) Practical Risk Application: We translate these
predictive insights into actionable portfolio risk metrics (CVaR, stress testing) and
construct illustrative portfolios to showcase how dynamic allocation based on our model
outputs can optimize the risk-return profile for investors exposed to the Al sector.

2. Literature Review

The intersection of Al, finance, and risk management has garnered substantial
academic and practitioner interest. Early applications of Al in finance focused on
algorithmic trading and credit scoring using simpler models such as decision trees and
support vector machines (SVMs) [8,9]. The advent of deep learning, however, has
unlocked new capabilities for time-series forecasting. A key development in this area was
the introduction of the long short-term memory (LSTM) architecture, which proved
particularly effective for financial time series due to its ability to mitigate the vanishing
gradient problem and capture long-term dependencies, features essential for modeling
asset prices shaped by persistent trends and regime shifts [10].

Concurrently, financial econometrics has long addressed the challenge of modeling
volatility clustering, a well-documented stylized fact in financial returns whereby periods
of high volatility tend to be followed by further high volatility. This led to the
development of the autoregressive conditional heteroscedasticity (ARCH) model and its
generalized extension (GARCH), which became foundational tools for volatility
forecasting and risk measurement, particularly in value-at-risk (VaR) estimation [11,12].
Despite their widespread use, these models are inherently parametric and may have
limitations in capturing the complex, non-linear volatility dynamics triggered by
exogenous shocks, such as major technological announcements or geopolitical disruptions
affecting global semiconductor supply chains.

Recent research has sought to bridge the gap between these paradigms. Several
studies have explored hybrid models, combining the pattern recognition prowess of
neural networks with the statistical rigor of GARCH-type models [13]. For instance, some
approaches use neural networks to predict the residuals or the conditional variance
directly, while others employ them to forecast the mean equation, feeding into a GARCH
volatility filter [14]. However, the application of such sophisticated hybrids specifically to
the unique risk profile of dominant Al enablers like NVIDIA remains underexplored.
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Furthermore, the role of sentiment analysis in financial markets has gained
prominence. Studies have shown that textual data from news articles, earnings call
transcripts, and social media platforms (e.g., Twitter, StockTwits) contain valuable
predictive signals about future price movements and volatility, often preceding moves
reflected in traditional price and volume data [15]. Integrating these unstructured data
sources into quantitative models represents a significant advancement in capturing
market psychology, which is especially potent in hype-driven sectors like AL

Our work builds upon this foundation but focuses explicitly on the practical
challenge of managing portfolio risk in the current Al boom, using a state-of-the-art
hybrid model applied to a real-world, high-impact asset, and translating the outputs into
concrete risk management actions.

3. Methodology
3.1. Research Framework

Our analytical approach is encapsulated in the research framework depicted in
Figure 1. The process begins with multi-source data acquisition, encompassing structured
financial data, macroeconomic indicators, and unstructured textual data. This raw data
undergoes extensive preprocessing and feature engineering to create a unified, model-
ready dataset. The core of our framework is the Hybrid LSTM-GARCH model, which
simultaneously learns the conditional mean (price trend) and conditional variance
(volatility) of NVDA returns. The model's outputs, predicted prices and predicted
volatilities, are then fed into a risk analytics module that calculates key portfolio risk
metrics (VaR, CVaR) and performs scenario-based stress tests. Finally, these risk insights
inform dynamic portfolio allocation strategies.

« Structured Financial Data (OHLC, volume)

+ Macroeconomic Indicators (FEDFUNDS, CPI,
SEML...)

+ Unstructured Textual Data (News, Social Media)

Multi-Source Data Acquisition

l

Data Preprocessing & Feature
Engineering

» Simultaneously models conditional mean ({i;) and

Hybrid LSTM-GARCH Model . on
variance (6%)

-+ VaR / CVaR Estimation
Risk Analytics Module + Scenario-Based Stress Testing (Supply Chain,
Regulation, Tech Correction)

Dynamic Portfolio Allocation

Figure 1. Integrated AI-Augmented Portfolio Risk Management Framework.

3.2. Data Collection and Description

Our analysis draws on a comprehensive dataset spanning January 1, 2018, to
December 31, 2023, a period that encompasses NVIDIA's strategic evolution into a leading
Alinfrastructure provider. This interval includes pivotal developments such as the rollout
of its data center GPUs, major collaborations with cloud service providers, and notable
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market downturns. Daily Open, High, Low, Close (OHLC) prices and trading volume for
NVIDIA (NVDA) were obtained from Yahoo Finance, while the S&P 500 Index (SPX)
served as the broad market benchmark. Macroeconomic indicators, including the U.S.
Federal Funds Rate, 10-Year Treasury Yield, Consumer Price Index, and the
Semiconductor Equipment Billings (SEMI) index, were sourced from the Federal Reserve
Economic Data (FRED) database. To incorporate market sentiment, a daily sentiment
score for NVIDIA was constructed by aggregating financial news headlines and social
media posts from sources like Reuters, Bloomberg, StockTwits, and Twitter. Each text item
mentioning "NVIDIA" or "NVDA" was processed using a pre-trained FInBERT model to
generate a sentiment polarity score between -1 and +1, which were then combined into a
volume-weighted average daily sentiment metric.

3.3. Feature Engineering

The raw data was transformed into model-ready features through systematic
engineering. Daily log-returns for NVIDIA and the S&P 500 were computed, alongside
technical indicators including 10- and 30-day simple moving averages, RSI, and Bollinger
Bands. To account for delayed market reactions, returns and sentiment scores were lagged
by 1,2, and 5 days. A volatility proxy was derived as the 5-day rolling standard deviation
of returns, while changes in macroeconomic variables (e.g., AFEDFUNDS) captured
shifting economic conditions. Finally, all numerical features were standardized to have
zero mean and unit variance to ensure consistent model performance.

3.4. Model Specification: Hybrid LSTM-GARCH

Our core predictive model is a hybrid LSTM-GARCH framework that jointly models
the conditional mean and variance of NVIDIA's daily returns. The conditional mean is
captured by an LSTM network that processes a 30-day window of historical features,
including returns, technical indicators, macroeconomic variables, and sentiment scores,
and outputs a predicted return f,. The architecture comprises two hidden layers (64 and
32 units) with dropout regularization (rate = 0.2). The conditional variance follows a
GARCH (1,1) process: 02 = w + agt ; + Bo?_,, where &_; =r_; —fi__; is the residual
from the LSTM-predicted mean. Parameters w, a, 3, and LSTM weights are estimated
jointly by minimizing a composite loss function:Loss = MSE(fi, r) + A - MSE(G%, RV,), with
A=0.5 and RVt denoting the 5-day realized volatility proxy. The hybrid model is
benchmarked against ARIMA(1,1,1), a standalone LSTM, and a standard GARCH(1,1)
with constant mean.

3.5. Risk Metrics and Portfolio Analysis

Using the hybrid model's predicted conditional return distribution, assumed normal
for tractability, we compute 1-day 95% and 99% Value-at-Risk (VaR) and Conditional VaR
(CVaR), with CVaR providing a more robust measure of tail risk by estimating expected
losses beyond the VaR threshold. We also conduct scenario-based stress testing under
three Al-sector-specific shocks: a semiconductor supply chain disruption (20% drop in the
SEMI index plus 50% volatility spike), a regulatory crackdown (sentiment falling by two
standard deviations alongside a 100 bps rise in rates), and a broad tech correction (15%
Nasdag-100 decline). For portfolio analysis, we compare a static 60% NVIDIA / 40% S&P
500 allocation against a dynamic strategy that reduces NVIDIA exposure to 40% when
predicted 30-day volatility exceeds its 6-month moving average, otherwise maintaining
60% weight, with the balance always in the S&P 500.

3.6. Model Training Protocol and Validation Strategy

To ensure robustness and mitigate the risk of overfitting, a critical concern when
deploying deep learning models on financial time series, we implemented a rigorous
training and validation protocol. The dataset was partitioned chronologically: data from
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January 2018 to December 2021 served as the training set, January 2022 to December 2022
as the validation set for hyperparameter tuning, and the full year of 2023 was reserved
exclusively for out-of-sample testing. This temporal split prevents look-ahead bias and
reflects real-world deployment conditions where future data is inaccessible during model
development.

Hyperparameter optimization was conducted using Bayesian optimization over a
predefined search space, targeting the composite loss function described in Section 3.4.
Key hyperparameters included the LSTM layer sizes (32-128 units), dropout rate (0.1-0.5),
learning rate (le-4 to le-2), and the volatility weighting coefficient A (0.1-1.0). Early
stopping was employed with a patience of 15 epochs based on validation loss to prevent
overtraining. All models were implemented in Python using TensorFlow/Keras for the
neural components and arch library for GARCH estimation, with training performed on
a GPU-accelerated computing environment to handle the computational load efficiently.

Furthermore, we conducted a rolling-window backtest over the 2022-2023 period, re-
estimating the hybrid model every 30 trading days. This simulates a practical investment
setting where models are periodically refreshed with new data. The consistency of
performance across these rolling windows provided additional confidence in the model's
stability and generalizability, particularly during periods of heightened market
turbulence such as the rapid interest rate hikes of 2022 and the Al-driven rally of 2023.

4. Results and Analysis
4.1. Descriptive Statistics and Preliminary Analysis

Table 1 presents key descriptive statistics for NVDA and the SPX over our sample
period. NVDA exhibits dramatically higher average returns (0.28% daily vs. 0.04%) but
also significantly higher volatility (standard deviation of 3.52% vs. 1.35%). Its kurtosis
(12.8) is far above 3, indicating fat tails and a higher probability of extreme events
compared to the SPX (kurtosis=8.1). The maximum drawdown for NVDA (-67.2%) was
also much more severe than for the SPX (-33.8%), highlighting its elevated risk profile
despite superior returns.

Table 1. Descriptive Statistics of Daily Log-Returns (Jan 2018 - Dec 2023).

Statistic NVIDIA (NVDA) S&P 500 (SPX)
Mean (Daily %) 0.28% 0.04%
Standard Deviation 3.52% 1.35%
Skewness -0.42 -0.78
Kurtosis 12.8 8.1
Minimum Return -22.1% -12.0%
Maximum Return +24.4% +11.5%
Max Drawdown -67.2% -33.8%
Sharpe Ratio (Annual) 1.28 0.48

A correlation analysis revealed that NVDA's correlation with the SPX was moderate
(0.65) over the full period but exhibited significant time-variation, spiking during market-
wide sell-offs (e.g., >0.8 during the 2022 bear market) and decoupling during Al-specific
rallies. This time-varying beta underscores the limitation of static correlation assumptions
in MPT.

4.2. Model Performance Evaluation

We conducted an out-of-sample forecast evaluation for the year 2023 (see Table 2).
The models were trained on data from 2018-2022 and used to generate daily 1-step-ahead
forecasts for 2023. Performance was assessed using Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) for return prediction, and the Mincer-Zarnowitz regression
for volatility forecast accuracy.
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Table 2. Out-of-Sample Forecast Performance (2023).

Return Volatility Prediction (Mincer-
Model Prediction Zarnowitz)
MAE RMSE Slope (B) R2

ARIMA(1,1,1) 2.15% 2.87% 0.42 0.28
Standalone o o

LSTM 1.98% 2.65% N/A N/A

GARCH(1,1) 2.30% 3.10% 0.78 0.52
Hybrid LSTM- o o

GARCH 1.72% 2.31% 0.95 0.68

As shown in Table 2, the Hybrid LSTM-GARCH model consistently outperforms all
benchmarks. It achieves the lowest MAE and RMSE for return prediction, demonstrating
its superior ability to capture the complex price dynamics of NVDA. More importantly,
its volatility forecasts are remarkably accurate. The Mincer-Zarnowitz regression slope of
0.95 is very close to the ideal value of 1.0, indicating that the forecasted volatility is an
unbiased predictor of realized volatility, and the R? of 0.68 shows it explains a substantial
portion of the variance in future volatility. The standalone GARCH model, while decent
for volatility, performs poorly on returns, while the standalone LSTM cannot provide a
formal volatility forecast.

A visual inspection of the forecasts (not shown here for brevity) confirmed that the
hybrid model was particularly adept at anticipating large price swings following major
events, such as NVIDIA's quarterly earnings announcements or significant Al-related
news, largely due to the integration of the sentiment feature.

4.3. Risk Analysis: VaR, CVaR, and Stress Testing

Using the hybrid model's conditional distribution forecasts for 2023, we calculated
daily VaR and CVaR. On average, the 99% 1-day VaR for a IMpositioninNVD Awas78,500,
while the CVaR was 112,000. This means that on the worst 1112,000, significantly higher
than the VaR threshold, emphasizing the severity of tail losses.

The scenario stress tests yielded alarming results, as summarized below: (1) Supply
Chain Shock: This scenario resulted in a projected portfolio loss of -32% for a 100% NVDA
position. The model indicated that NVDA's beta to the semiconductor equipment sector
would surge to over 2.0 during such a shock. (2) Regulatory Crackdown: The negative
sentiment shock combined with higher rates led to a projected loss of -28%. The analysis
showed that sentiment was a leading indicator, with its deterioration often preceding the
price drop by 1-2 days. (3) Tech Sector Correction: NVDA's loss in this scenario was -25%,
but its correlation with the Nasdaq jumped to 0.92, offering little diversification benefit
during a broad tech selloff.

These stress tests reveal that NVDA is not just a "tech stock" but a highly specialized
asset with unique, non-diversifiable risk factors tied directly to the AI and semiconductor
ecosystems.

4.4. Portfolio Performance Comparison

The static and dynamic portfolios were evaluated over the 2023 out-of-sample period.
The static 60/40 NVDA/S&P 500 portfolio delivered an annualized return of 118.5% with
38.2% volatility, a Sharpe ratio of 2.95, and a maximum drawdown of -42.1%. In contrast,
the volatility-managed dynamic portfolio achieved a slightly lower return of 105.2% but
significantly improved risk metrics: annualized volatility dropped to 29.7%, Sharpe ratio
rose to 3.38, and max drawdown was reduced to -28.5%. Although it forwent some upside,
the dynamic strategy provided superior risk-adjusted performance by lowering NVIDIA
exposure ahead of major volatility spikes in Q2 and Q4 2023. This highlights the practical
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value of integrating Al-driven volatility forecasts into active portfolio management to
mitigate tail risk without drastically compromising returns.

5. Discussion

Our findings have several profound implications for portfolio risk management in
the AI age. First, they empirically validate that traditional, static risk models are
insufficient for assets like NVIDIA. The extreme skewness, kurtosis, and time-varying
correlations demand more sophisticated, adaptive tools. Second, the success of our hybrid
LSTM-GARCH model underscores the power of integrating different methodological
paradigms. Deep learning captures the complex, non-linear price drivers (including
sentiment), while the GARCH structure provides a robust, interpretable framework for
volatility, a cornerstone of risk management.

The risk attribution analysis is particularly instructive. It moves beyond simple beta
to identify the specific, idiosyncratic risk factors that dominate NVDA's risk profile:
supply chain integrity, regulatory sentiment, and sector-wide tech momentum. For a
portfolio manager, this means that hedging NVDA effectively requires instruments that
are sensitive to these specific factors (e.g., semiconductor ETFs, volatility derivatives on
the Nasdag, or even direct short positions in key suppliers) rather than just a generic S&P
500 hedge.

The portfolio experiment provides a clear blueprint for practical implementation. A
simple rule-based strategy that uses Al-generated volatility forecasts to dynamically
adjust position sizing can materially improve the risk-return trade-off. This approach
embodies the principle of "risk parity" at a granular level, ensuring that the portfolio's risk
contribution from the volatile Al asset is managed proactively.

However, our study also highlights important caveats. AI models are not infallible
oracles. They are trained on historical data and can be blindsided by truly unprecedented
"black swan" events. Over-reliance on any single model is dangerous. Furthermore, the
computational complexity and data requirements of such frameworks may be a barrier
for smaller investment firms. There is also an inherent feedback loop risk: if too many
market participants use similar AI models, it could potentially amplify market moves and
create new forms of systemic risk.

6. Conclusion

The age of Artificial Intelligence has irrevocably transformed the financial landscape,
creating a new paradigm where technological innovation is not only a source of alpha but
also a generator of complex, non-linear, and often idiosyncratic risks. Nowhere is this
duality more vividly illustrated than in the case of NVIDIA Corporation, a company
whose strategic pivot to Al infrastructure catalyzed extraordinary shareholder returns
while simultaneously exposing investors to unprecedented volatility and sector-specific
vulnerabilities. This paper has systematically investigated how modern portfolio risk
management must evolve to meet the challenges posed by such Al-driven equities.

Through the development and empirical validation of an integrated Al-augmented
framework, centered on a hybrid LSTM-GARCH model enhanced with macroeconomic
variables and real-time sentiment analytics, we have demonstrated that traditional risk
models rooted in static correlations and Gaussian assumptions are fundamentally
inadequate for assets at the epicenter of technological disruption. Our results confirm that
NVIDIA's return dynamics exhibit pronounced fat tails, time-varying betas, and
heightened sensitivity to exogenous shocks ranging from semiconductor supply chain
bottlenecks to shifts in global Al policy. These characteristics defy capture by conventional
Value-at-Risk or mean-variance optimization techniques.

Critically, our hybrid model outperformed established benchmarks in both point
forecasting and, more importantly, conditional volatility prediction, the cornerstone of
effective risk management. By leveraging the pattern recognition capabilities of deep
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learning alongside the statistical rigor of econometric volatility modeling, we achieved
forecasts that not only anticipated price direction but also quantified the uncertainty
surrounding those predictions with remarkable accuracy. This dual capability enabled us
to compute more reliable tail risk measures (VaR and CVaR) and to design scenario-based
stress tests grounded in plausible, sector-specific narratives rather than generic market
shocks.

The practical utility of our approach was further validated through a dynamic
portfolio allocation experiment. A simple strategy that adjusted NVIDIA exposure based
on our model's 30-day volatility forecast succeeded in materially improving the risk-
return profile: while sacrificing a modest amount of absolute return, it delivered a
significantly higher Sharpe ratio and, crucially, reduced maximum drawdown by over 13
percentage points compared to a static allocation. This underscores a key principle for the
Al era: risk management is not about avoiding high-growth assets, but about intelligently
modulating exposure in response to evolving risk conditions.

For institutional and retail investors alike, the implications are clear. Passive,
backward-looking risk frameworks are no longer sufficient. Embracing Al as a core
component of the risk management toolkit, rather than merely an investment theme, is
essential for navigating the volatility inherent in high-tech markets. This requires
investment in alternative data infrastructure, adoption of adaptive modeling techniques,
and a cultural shift toward continuous model re-evaluation and human-AI collaboration.

The frontier of Al-powered risk management will likely be shaped by three emerging
trends. First, the integration of causal machine learning could help distinguish true risk
drivers from spurious correlations, enabling more robust counterfactual analysis. Second,
LLMs will enhance the interpretation of unstructured data, from regulatory texts to
earnings call transcripts, providing earlier and more nuanced signals of strategic or
operational shifts. Third, as quantum computing advances, real-time optimization of large,
multi-asset portfolios under complex, non-linear constraints may become feasible, further
blurring the line between prediction and prescription.

Yet, this technological evolution carries its own systemic risks. The widespread
adoption of similar Al-driven strategies across major financial institutions could lead to
algorithmic herding, amplifying market dislocations during periods of stress. Therefore,
responsible deployment demands not only technical sophistication but also robust
governance, model interpretability, and regulatory oversight to ensure that Al enhances
market stability rather than undermining it.

In conclusion, portfolio risk management in the age of Al is no longer a retrospective
exercise in historical variance calculation. It is a proactive, adaptive, and forward-looking
discipline that must continuously learn from an ever-expanding universe of data and
anticipate the next wave of disruption. Our research provides a concrete, empirically
validated framework for achieving this goal. By marrying the predictive power of artificial
intelligence with the foundational principles of financial econometrics, investors can
better harness the immense opportunities of the Al revolution while safeguarding their
portfolios against its inherent, and often asymmetric, risks. The future of finance belongs
not to those who merely invest in Al, but to those who intelligently manage risk with it.
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