
Simen Owen Academic 
Proceedings Series 
 

Vol. 2 2025  
 

Vol. 2 (2025) 160  

Article  

A Comparative Study of Deep Learning Architectures for 
Multivariate Financial Time Series Forecasting 
Liuqing Ding 1,* 

1 Boston University, Boston, MA, 02215, USA 
* Correspondence: Liuqing Ding, Boston University, Boston, MA, 02215, USA 

Abstract: Accurate forecasting of multivariate financial time series remains a critical challenge due 
to high volatility, non-stationarity, and complex cross-variable dependencies. Although deep 
learning models such as LSTM, GRU, TCN, and Transformer have shown notable progress, existing 
research often evaluates these architectures in isolation, lacks interpretability, and provides limited 
analysis of robustness across different markets. These limitations impede the deployment of reliable 
forecasting systems in practical financial settings. This study presents a comprehensive comparative 
analysis of representative deep learning architectures for financial forecasting and introduces a 
novel Hybrid Attention-Gated Module (HAGM). HAGM combines convolutional feature extraction, 
gated fusion, and multi-head self-attention mechanisms to efficiently capture both local and global 
dependencies. Experiments were conducted on stock indices, foreign exchange, and cryptocurrency 
datasets, assessing model performance across multiple forecast horizons. The results demonstrate 
that HAGM consistently outperforms baseline models, achieving lower RMSE and MAPE while 
exhibiting faster convergence. Ablation studies confirm the complementary contributions of 
convolution, gating, and attention components, and interpretability analyses identify critical 
variables such as trading volume and volatility. Robustness evaluations further reveal superior 
cross-market generalization and resilience under noisy conditions. Overall, this work advances the 
methodological understanding of deep learning approaches for financial forecasting and provides 
actionable insights for practitioners aiming to develop accurate, efficient, and interpretable 
predictive systems. 
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1. Introduction 
Forecasting multivariate time series has emerged as a critical challenge in machine 

learning, as numerous real-world applications, ranging from energy consumption 
prediction to sensor data monitoring, rely on accurate modeling of high-dimensional 
temporal dependencies [1]. Among these, financial time series forecasting represents a 
particularly demanding scenario, characterized by high volatility, non-stationarity, and 
intricate cross-variable correlations [2]. Unlike traditional univariate forecasting, where 
each series is modeled independently, multivariate financial forecasting requires the 
integration of diverse indicators, such as stock indices, exchange rates, and trading 
volumes, into a unified predictive framework [3]. The complexity of these 
interdependencies has positioned deep learning as a promising solution, offering the 
capability to capture nonlinear patterns and long-range dependencies that classical 
statistical methods often fail to model effectively. 
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Despite significant progress in deep learning for time series, several challenges 
remain. Recurrent neural networks (RNNs) and their variants, including Long Short-Term 
Memory (LSTM) and Gated Recurrent Units (GRU), have been widely applied due to their 
ability to mitigate vanishing gradients and retain long-term memory [4]. However, these 
architectures still face sequential training inefficiencies and limited scalability when 
processing very long sequences. Temporal Convolutional Networks (TCNs) offer an 
alternative by exploiting dilated convolutions to capture extended contexts, yet they often 
lack flexibility in modeling cross-variable dependencies [5]. More recently, Transformer-
based architectures have demonstrated superior performance in natural language 
processing and are increasingly adapted for time series analysis [6]. Their self-attention 
mechanisms enable parallelization and the modeling of complex, non-local dependencies. 
Nevertheless, high computational costs and limited domain-specific adaptations 
constrain their broader adoption in financial forecasting tasks. 

Methodologically, current research exhibits additional shortcomings. Many studies 
evaluate models on narrow datasets or focus solely on single-architecture performance 
without systematic cross-model comparison. Furthermore, interpretability, a critical 
factor for practical deployment, is often overlooked, leaving end users with limited insight 
into model decision-making. This absence of rigorous comparative studies not only 
hinders fair benchmarking but also restricts the development of hybrid or domain-specific 
models optimized for multivariate forecasting tasks. 

To address these gaps, this study conducts a comprehensive comparative analysis of 
representative deep learning models for multivariate financial time series forecasting. 
Specifically, we examine the performance of RNN, LSTM, GRU, TCN, and Transformer-
based architectures, alongside a hybrid design that integrates convolutional feature 
extraction with multi-head attention. The proposed Hybrid Attention-Gated Module 
(HAGM) is designed to enhance cross-variable dependency modeling while maintaining 
computational efficiency. By comparing models across multiple datasets and evaluation 
metrics, we aim to provide a clearer understanding of the conditions under which each 
architecture excels or underperforms. 

The methodological approach of this study comprises three key stages. First, diverse 
real-world financial datasets are curated and preprocessed to ensure comparability across 
models. Second, each architecture is trained and evaluated using standardized protocols, 
covering both short- and long-horizon forecasting tasks. Third, supplementary analyses, 
including ablation experiments, statistical significance tests, and interpretability 
assessments via attention heatmaps and Shapley values, are conducted to reveal model 
behavior and robustness. This structured pipeline ensures both fairness in evaluation and 
depth in analysis. 

The contributions of this work are threefold. (1) We provide a systematic, large-scale 
comparison of widely adopted deep learning architectures for multivariate financial 
forecasting, filling a critical gap in existing literature. (2) We introduce a novel hybrid 
attention-gated module that achieves superior accuracy in capturing long-range and 
cross-variable dependencies. (3) We offer interpretability-driven insights and robustness 
evaluations that enhance the practical utility of deep learning models in real-world 
applications. 

By focusing on architectural performance, design trade-offs, and interpretability, this 
study advances the methodological foundation of deep learning for time series forecasting. 
Beyond financial applications, the findings contribute to broader machine learning 
research, offering guidance for deploying deep learning architectures in domains where 
multivariate, nonlinear, and interdependent time series are prevalent. 

2. Related Works 
Deep learning has become the predominant paradigm for multivariate time series 

forecasting, yet existing studies vary considerably in their choice of architectures, datasets, 
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and evaluation methodologies. This section reviews related works across three key 
subfields: recurrent neural architectures, convolutional and hybrid models, and 
Transformer-based approaches. Each subsection highlights representative studies, their 
advantages and limitations, and their relation to the present work. 

2.1. Recurrent Neural Architectures 
Recurrent neural networks (RNNs) and their derivatives, including Long Short-Term 

Memory (LSTM) and Gated Recurrent Units (GRU), remain widely studied for financial 
and multivariate forecasting [7]. LSTM networks, in particular, have been employed to 
capture long-range temporal dependencies while mitigating vanishing gradient issues. 
Several studies have applied LSTM to stock index prediction, demonstrating 
improvements over autoregressive integrated moving average (ARIMA) baselines, 
especially in modeling nonlinear market behaviors [8]. GRU has also gained attention due 
to its computational efficiency and reduced parameter count compared with LSTM, 
making it suitable for high-frequency financial data. 

However, recurrent models are inherently sequential, which limits training efficiency 
and scalability. Their capacity to capture cross-variable dependencies is also constrained, 
as most implementations focus on temporal recurrence rather than inter-series 
interactions. Some extensions of LSTM incorporate attention mechanisms or multi-task 
objectives to address these limitations, but the improvements are often dataset-specific 
and lack generalization [9]. In this study, RNN-based models are included as baselines to 
benchmark their relative strengths and weaknesses against more recent architectures. 

2.2. Convolutional and Hybrid Architectures 
Temporal Convolutional Networks (TCNs) and hybrid CNN-RNN models represent 

an alternative research direction, leveraging convolutional kernels and dilation to expand 
receptive fields [10]. TCNs have been shown to achieve faster training compared to 
recurrent models, with the added benefit of parallelization [11]. For example, studies 
applying dilated causal convolutions to energy and traffic datasets demonstrated superior 
short-term forecasting accuracy relative to LSTM, particularly when long input windows 
were required. CNN-LSTM hybrids have also been applied to financial data, where 
convolutional layers capture local temporal or cross-series features, and recurrent layers 
model sequential dynamics [12]. 

The primary strengths of convolutional and hybrid models lie in their efficiency and 
capacity for multi-scale feature extraction. Nevertheless, they often struggle to capture 
global dependencies, especially in long-horizon forecasting tasks. Moreover, while CNN-
based models tend to generalize well across certain domains, their interpretability 
remains limited, which poses challenges for deployment in contexts such as finance. In 
this work, TCN and hybrid models are evaluated to highlight trade-offs in training 
efficiency and predictive accuracy, and to establish a foundation for the hybrid attention-
gated design introduced later. 

2.3. Transformer-Based and Attention-Driven Models 
The latest advances in multivariate forecasting are driven by Transformer-based 

architectures. Originally developed for natural language processing, Transformers utilize 
self-attention mechanisms to capture global dependencies and allow full parallelization 
during training. Variants such as Informer and Autoformer have been proposed to reduce 
the quadratic complexity of vanilla Transformers when applied to long sequences [13]. 
These models have achieved state-of-the-art results on benchmark time series datasets, 
including weather, electricity, and financial indicators. Their ability to model non-local 
correlations makes them particularly suitable for multivariate forecasting. 

Despite their advantages, Transformer-based models face challenges. High 
computational requirements complicate real-time deployment, and their performance is 
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sensitive to hyperparameter tuning and dataset size [14]. Furthermore, interpretability 
remains a concern, as attention weights alone may not fully explain prediction outcomes. 
Some studies have attempted to enhance interpretability by integrating feature attribution 
methods, though these approaches remain underexplored [15]. 

In this study, Transformer models are compared directly with RNN- and CNN-based 
baselines, providing a comprehensive evaluation of their advantages and trade-offs. The 
proposed hybrid attention-gated module draws inspiration from the Transformer's ability 
to model dependencies while mitigating computational costs through the combination of 
attention and lightweight convolutional operations. 

2.4. Summary 
Existing research reveals complementary trade-offs across architectures. Recurrent 

models excel at capturing sequential dependencies but scale poorly. Convolutional and 
hybrid models offer efficient training and multi-scale feature extraction but struggle with 
global dependencies and interpretability. Transformer-based methods achieve state-of-
the-art accuracy by modeling long-range and cross-variable correlations, albeit with high 
computational cost and limited transparency. These gaps highlight the need for 
systematic cross-model comparison and hybrid approaches that integrate efficiency, 
scalability, and accuracy, objectives directly addressed in this study. 

3. Methodology 
This section introduces the methodological framework for comparing deep learning 

architectures in multivariate financial time series forecasting. The study benchmarks 
classical recurrent models (LSTM, GRU), convolutional approaches (TCN), and 
Transformer-based architectures, alongside a proposed Hybrid Attention-Gated Module 
(HAGM). The methodology encompasses problem formulation, model-specific 
mechanisms, the proposed module, training objectives, and evaluation protocols. 

3.1. Problem Formulation 
Multivariate financial forecasting involves predicting future values of multiple 

interdependent time series, such as stock prices, exchange rates, or trading volumes. 
Unlike univariate forecasting, where each sequence is modeled independently, 
multivariate forecasting requires capturing both temporal dynamics within each variable 
and cross-variable dependencies, which significantly increases modeling complexity. 

Formally, the input series is defined as: 
X = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑇𝑇 , }, 𝑥𝑥𝑡𝑡 ∈ 𝑅𝑅𝑑𝑑          (1) 
where T denotes the sequence length and ddd the number of variables. The 

forecasting objective is to predict the next h steps: 
𝑌𝑌� = 𝑓𝑓𝜃𝜃(𝑋𝑋),𝑌𝑌� ∈ 𝑅𝑅ℎ×𝑑𝑑           (2) 
Here, 𝑓𝑓𝜃𝜃  represents a deep learning model parameterized by 𝜃𝜃  Different 

architectures impose distinct inductive biases: recurrent models emphasize sequential 
memory, convolutional models focus on local patterns, and Transformers leverage self-
attention to capture long-range and global interactions. In practice, the prediction horizon 
ℎ may vary, with short-term horizons being critical for high-frequency trading, while 
longer horizons serve portfolio management and risk control. This formulation provides 
a unified framework to systematically evaluate and compare the strengths and limitations 
of competing architectures. 

3.2. Lstm-Based Forecasting 
Long Short-Term Memory (LSTM) networks are among the most widely used 

recurrent architectures for time series forecasting due to their ability to mitigate vanishing 
gradients and capture long-range temporal dependencies. LSTM introduces memory cells 
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and gating mechanisms that regulate information flow. At each time step t, the hidden 
state is updated as: 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ⊙ tanh (𝑓𝑓𝑡𝑡 ⊙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝑐̃𝑐𝑡𝑡)        (3) 
where 𝑓𝑓𝑡𝑡, 𝑖𝑖𝑡𝑡, and 𝑜𝑜𝑡𝑡 denote the forget, input, and output gates, 𝑐𝑐𝑡𝑡 represents the cell 

state, and ⊙ indicates elementwise multiplication. This structure allows the network to 
retain important historical signals while discarding irrelevant noise. 

In multivariate financial forecasting, LSTM has been applied to tasks such as stock 
index prediction, volatility estimation, and cross-asset forecasting. Its advantage lies in 
modeling nonlinear temporal patterns, outperforming classical linear models. However, 
LSTM suffers from sequential training inefficiencies, limited scalability for long horizons, 
and does not explicitly model cross-variable dependencies. These limitations underscore 
the need to benchmark LSTM against more recent architectures, including Transformers 
and hybrid modules, under a unified experimental framework. 

3.3. Transformer-Based Forecasting 
Transformers, originally developed for natural language processing, have been 

adapted for multivariate time series forecasting due to their ability to capture long-range 
dependencies without sequential recurrence. The core mechanism is self-attention: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄𝐾𝐾
𝑇𝑇

�𝑑𝑑𝑘𝑘
)𝑉𝑉        (4) 

where 𝑄𝑄, 𝐾𝐾, and 𝑉𝑉 are the query, key, and value matrices projected from the input 
sequence, and 𝑑𝑑𝑘𝑘  denotes the key dimension. Multi-head attention further improves 
representation learning by jointly attending to multiple subspaces. 

In financial forecasting, Transformers effectively model temporal and cross-variable 
dependencies, making them suitable for tasks such as risk prediction and volatility 
estimation. Their parallelizable architecture accelerates training compared with recurrent 
models. Nevertheless, quadratic complexity in sequence length increases computational 
cost, and performance often depends on careful hyperparameter tuning. Additionally, 
attention weights provide limited interpretability, motivating hybrid designs that retain 
Transformers' modeling power while improving efficiency and robustness. 

3.4. Proposed Hybrid Attention-Gated Module 
While LSTM and Transformer architectures provide complementary strengths, they 

also present notable weaknesses: LSTM suffers from scalability constraints, and 
Transformers impose high computational costs. To address these issues, we design a 
Hybrid Attention-Gated Module (HAGM) that integrates convolutional encoding, gated 
fusion, and self-attention. 

First, a 1D convolutional encoder extracts local temporal and cross-variable features, 
reducing noise and producing compact representations. Then, a gated fusion mechanism 
adaptively merges convolutional features with prior hidden states: 

ℎ�t = 𝑔𝑔t ⊙ zt + (1 − gt) ⊙ ht−1         (5) 
where 𝑔𝑔𝑡𝑡 is a learnable gate, 𝑧𝑧𝑡𝑡 the convolutional feature, and ℎ𝑡𝑡−1 the prior state. 

Finally, a multi-head self-attention layer models global dependencies across long 
sequences. 

Practically, HAGM improves efficiency by reducing full attention cost, enhances 
generalization by combining local and global patterns, and increases interpretability by 
highlighting relevant variables and time steps. 

3.5. Training Objective and Optimization 
To ensure robust forecasting, we adopt a composite loss that balances sensitivity to 

large deviations and average prediction errors: 
𝐿𝐿 = 𝛼𝛼 ⋅ MSE(Y, Y�) + (1 − 𝛼𝛼) ⋅ MAE(𝑌𝑌,𝑌𝑌�)        (6) 
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where 𝛼𝛼 ∈ [0,1] controls the trade-off between Mean Squared Error (MSE) and Mean 
Absolute Error (MAE). Models are trained using the Adam optimizer with learning rate 
scheduling, early stopping, and gradient clipping to prevent overfitting and stabilize 
convergence. This unified training strategy guarantees fair comparison across 
architectures. 

3.6. Overall Framework 
The proposed methodology integrates multiple architectures within a unified 

comparative framework to ensure consistent evaluation. As illustrated in Figure 1, the 
pipeline begins with data preprocessing, where raw financial series are normalized and 
segmented using a sliding window to generate fixed-length input sequences. These 
sequences are then fed into five distinct model branches: LSTM, GRU, TCN, Transformer, 
and HAGM. Each branch captures temporal and cross-variable dependencies based on its 
architectural strengths. 

 
Figure 1. Comparative framework for multivariate financial time series forecasting. 

During training, all architectures are optimized using the same composite loss, 
optimizer, and hyperparameter schedule to guarantee fairness. Outputs converge into a 
unified evaluation module, where performance is assessed through predictive accuracy 
(RMSE, MAE), convergence behavior, robustness to distributional shifts, and 
interpretability via attention weights and gating signals. 

Figure 1 depicts the end-to-end process: data flow from preprocessing into model-
specific pathways and converge in the evaluation stage. By standardizing training 
conditions while comparing diverse architectures, this framework benchmarks existing 
methods and highlights the added value of HAGM in balancing efficiency, scalability, and 
predictive accuracy. 

4. Results and Analysis 
To ensure comprehensive evaluation, experiments were conducted on three real-

world financial datasets: 
1) S&P500 Index Dataset: daily closing prices, trading volumes, and volatility 

indices for 500 U.S. equities (2012-2024). 
2) Foreign Exchange (FX) Dataset: hourly exchange rates of USD, EUR, JPY, and 

GBP combined with macroeconomic indicators (2015-2024). 
3) Cryptocurrency Dataset: minute-level trading data for Bitcoin, Ethereum, and 

Litecoin from Coinbase (2017-2024). 
Each dataset was normalized using z-score standardization and partitioned into 

training (70%), validation (15%), and testing (15%) subsets. Evaluated models include 
LSTM, GRU, TCN, Transformer, and the proposed Hybrid Attention-Gated Module 
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(HAGM). Forecast horizons of h=5,20,60 steps were selected to represent short-, medium-, 
and long-term scenarios. 

4.1. Performance Comparison with Baselines 
Table 1. presents predictive performance across datasets using RMSE, MAE, and 

MAPE as evaluation metrics. 

Table 1. Forecasting Performance across Models. 

Model S&P500 (RMSE) FX (MAE) Crypto 
(MAPE %) 

Avg. Rank 

LSTM 0.031 0.024 3.91 4.0 
GRU 0.030 0.023 3.84 3.5 
TCN 0.029 0.021 3.72 3.0 

Transformer 0.027 0.019 3.55 2.0 
HAGM 0.025 0.018 3.41 1.0 
Across all datasets, HAGM consistently outperforms baseline models, particularly 

for long-horizon forecasting. For example, on the cryptocurrency dataset, HAGM reduces 
MAPE by 12.8% compared with LSTM. While Transformers show clear advantages over 
recurrent and convolutional models, their gains are further enhanced when combined 
with convolutional encoding and gating in HAGM. This suggests that hybridization is 
especially beneficial in volatile markets, where capturing both local fluctuations and 
global trends is crucial. The overall average ranking also confirms HAGM's robustness 
across diverse domains, highlighting its practical value in financial applications where 
consistent performance across assets is critical. 

4.2. Convergence and Statistical Testing 
Training dynamics reveal distinct convergence behaviors. As illustrated in Figure 2, 

TCN achieves faster initial error reduction than recurrent models due to parallelized 
convolutions, but its performance plateaus earlier. LSTM and GRU improve steadily yet 
converge more slowly, reflecting sequential processing limitations. In contrast, 
Transformer and HAGM achieve lower final errors and exhibit smoother convergence 
curves, suggesting better optimization stability. Notably, HAGM reaches its optimal 
range within fewer epochs than Transformer, highlighting the efficiency gained from 
combining convolutional encoding and gating with self-attention. 

 
Figure 2. Convergence Analysis. 
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Paired t-tests were conducted on test RMSE between HAGM and each baseline. 
Results confirmed statistically significant improvements across datasets (p < 0.01), 
indicating that HAGM's advantages reflect consistent performance gains rather than 
random fluctuations. Together, convergence analysis and statistical validation underscore 
HAGM's ability to deliver both efficient training and superior predictive accuracy, a 
critical requirement for real-world applications where computational resources and 
deployment time are limited. 

4.3. Ablation Study 
To assess the contribution of each HAGM component, ablation experiments were 

performed by selectively removing convolution, gating, or attention. Table 2 presents 
results on the S&P500 dataset. 

Table 2. Ablation Study on S&P500 Dataset (RMSE). 

Model Variant RMSE 
Full HAGM 0.025 

-Conv 0.028 
-Gate 0.027 
-Attn 0.029 

Without convolution, the model struggles to capture local temporal dynamics and 
short-range cross-variable patterns, resulting in higher RMSE. Excluding the gating 
mechanism reduces the model's ability to adaptively filter information, leading to less 
stable predictions. The absence of attention causes the most significant performance 
decline, as the model loses its capacity to capture long-range dependencies and align 
global patterns across variables. These results highlight the complementary nature of 
convolution, gating, and attention: convolution enhances local feature extraction, gating 
balances information flow, and attention ensures global modeling. This synergy enables 
HAGM to achieve superior forecasting accuracy in volatile and high-dimensional 
financial environments. 

4.4. Interpretability and Visualization 
Interpretability is essential in financial forecasting, as models must provide insights 

supporting human decision-making. Two complementary analyses were conducted. 
First, attention heatmaps illustrate temporal positions and variables that contribute 

most strongly to predictions. As shown in Figure 3, during sudden FX rate fluctuations, 
HAGM assigns higher weights to volatility indicators and macroeconomic features, while 
down-weighting less informative signals. This demonstrates the model's ability to 
dynamically adjust its focus based on market conditions, offering intuitive explanations 
of its decisions. 
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Figure 3. Attention Heatmap of HAGM on FX Dataset. 

Second, feature attribution via SHAP values was applied to quantify variable 
importance. Across all datasets, trading volume and volatility consistently ranked among 
the most influential predictors, while raw price series contributed less once higher-order 
indicators were included. This aligns with domain knowledge, where volume and 
volatility often serve as early warning signals of market shifts. 

Together, these interpretability results show that HAGM not only delivers stronger 
accuracy but also enhances trustworthiness. By identifying when and why certain 
variables matter, the model provides actionable insights for analysts and risk managers, 
bridging the gap between black-box forecasting and practical financial applications. 

4.5. Generalization and Robustness 
A critical requirement for practical deployment is ensuring that forecasting models 

generalize across markets and remain robust under noisy or imperfect data conditions. To 
assess generalization, models trained on the S&P500 dataset were directly tested on the 
NASDAQ-100 index without retraining. While all models experienced some performance 
degradation, HAGM maintained the lowest RMSE (0.033), compared with higher errors 
from LSTM (0.039) and GRU (0.037). This suggests that HAGM better captures 
transferable dependencies, making it more suitable for scenarios where market conditions 
shift rapidly. 

Robustness was further evaluated by injecting Gaussian noise into the test sequences 
to mimic real-world market irregularities, such as missing values or reporting errors. As 
illustrated in Figure 4, all models exhibited performance drops, but HAGM's increase in 
error was significantly smaller, confirming its resilience. This robustness stems from the 
convolutional encoder's ability to filter noise and the gating mechanism's adaptive 
weighting of information. 
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Figure 4. Robustness Analysis under Noisy Test Conditions. 

Overall, these results highlight HAGM's dual advantage: reliable cross-market 
generalization and robustness to data imperfections, both of which are vital for financial 
institutions that rely on stable and interpretable predictive systems in volatile 
environments. 

5. Conclusion 
This study systematically compared deep learning architectures for multivariate 

financial time series forecasting, including recurrent models (LSTM, GRU), convolutional 
approaches (TCN), Transformer-based architectures, and the proposed Hybrid Attention-
Gated Module (HAGM). Experiments across stock, foreign exchange, and cryptocurrency 
datasets demonstrate that HAGM consistently outperforms baselines in predictive 
accuracy, convergence stability, and robustness. Its integration of convolution, gating, and 
attention mechanisms enables balanced modeling of local patterns and global 
dependencies while enhancing interpretability through attention visualization and 
variable attribution. 

Beyond accuracy, hybrid architectures offer practical advantages. Convergence 
analysis confirmed HAGM's efficiency relative to Transformer, ablation studies validated 
the necessity of each module, and interpretability analyses provided actionable insights 
for financial analysts. Cross-market testing and noise perturbation experiments further 
demonstrate the model's generalization capability and resilience under imperfect 
conditions. 

These findings suggest that combining inductive biases from multiple architectures 
yields substantial gains over single-model approaches. Future work will explore scaling 
HAGM to higher-frequency data, integrating reinforcement learning for decision-making, 
and extending interpretability with counterfactual explanations. Collectively, this 
research provides both methodological and practical contributions toward deploying 
reliable, accurate, and transparent forecasting systems in complex financial environments. 
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