Simen Owen Academic Proceedings Series

Vol. 2 2025

Review Open Access

Integrating Intellectual Capital into Enterprise Valuation: A Framework for the Knowledge Economy

Shu Zheng 1,*

- ¹ Jinan Maple Leaf Bilingual School, Jinan, 250215, China
- * Correspondence: Shu Zheng, Jinan Maple Leaf Bilingual School, Jinan, 250215, China

Abstract: The accelerating transition toward a knowledge-based economy has shifted enterprise value from tangible assets to intellectual capital, encompassing human expertise, organizational processes, and relational networks. Traditional valuation models, including discounted cash flow and multiples, consistently underrepresent these intangible drivers, resulting in a divergence between reported financials and market assessments. To bridge this gap, this study develops a comprehensive framework that integrates intellectual capital considerations with insights from both knowledge-based and resource-based perspectives on the firm. Methodologically, the research combines a systematic review of recent literature, a comparative evaluation of existing intellectual capital models, and a case-based framework illustrated through analyses of Moderna, Alphabet, and Tencent, representing the biotechnology, artificial intelligence, and digital platform sectors, respectively. The findings reveal that human capital serves as a key driver of innovation, structural capital enhances scalability and organizational resilience, and relational capital strengthens trust and market legitimacy, collectively generating valuation outcomes that exceed the explanatory power of conventional models. The study contributes theoretically by unifying strategic management and financial perspectives, and practically by equipping investors, managers, and policymakers with structured tools to identify and measure the true sources of enterprise value. By embedding intellectual capital into valuation processes, this research redefines how competitiveness and growth potential are assessed in the contemporary knowledge economy.

Keywords: Intellectual Capital (IC); enterprise valuation; knowledge economy; case-based framework; intangible assets

Received: 08 October 2025 Revised: 25 October 2025 Accepted: 13 November 2025 Published: 23 November 2025

Copyright: © 2025 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).

1. Introduction

The rapid evolution of the global economy has fundamentally transformed the sources of enterprise value. Whereas tangible assets such as land, machinery, and financial capital once formed the primary basis of valuation, the contemporary knowledge economy increasingly relies on intellectual capital (IC), a multidimensional construct encompassing human expertise, organizational routines, and relational networks [1]. This shift reflects not only the rise of technology-driven industries but also the growing recognition that innovation, learning capacity, and brand reputation are strategic assets that drive long-term competitiveness [2]. According to reports from the World Intellectual Property Organization, intangible assets now constitute more than 60 percent of enterprise value in many advanced economies, highlighting the urgent need to revisit and adapt valuation frameworks. Traditional models, including discounted cash flow (DCF) and earnings multiples, frequently fail to capture these intangible drivers, resulting in systematic mispricing, particularly in knowledge-intensive sectors such as biotechnology, artificial intelligence, and digital services [3].

Despite increasing scholarly attention, current valuation approaches remain fragmented and limited in their treatment of intellectual capital. Many studies attempt to operationalize IC through proxies such as R&D intensity, patent counts, or brand valuations; however, these measures capture only partial aspects of a firm's knowledge base [4]. Furthermore, the conceptual diversity of IC-spanning human, structural, and relational dimensions-complicates its integration into financial models originally designed for tangible assets. Recent research also indicates that while investors recognize the importance of IC, disclosure practices are inconsistent, and accounting standards continue to lag behind economic realities [5]. Consequently, a persistent gap exists between theoretical acknowledgment of IC's significance and its systematic incorporation into enterprise valuation methodologies.

This study seeks to address this gap by developing a structured framework for integrating intellectual capital into enterprise valuation. The proposed framework draws upon the knowledge-based view of the firm, which positions knowledge as the most strategically critical resource, and the resource-based theory, which emphasizes the value, rarity, inimitability, and non-substitutability of intangible assets. By combining these theoretical foundations, the study advances a multidimensional approach that links IC components to mechanisms of value creation, thereby offering a more precise representation of enterprise worth. Methodologically, the research employs a qualitative design, synthesizing contemporary literature, conducting comparative analyses across theoretical perspectives, and examining illustrative cases from knowledge-intensive industries. Specifically, three representative companies are analyzed: Moderna (biotechnology), Alphabet (artificial intelligence and digital infrastructure), and Tencent (digital platforms and ecosystems). These cases are selected because they exemplify how human, structural, and relational capital respectively influence valuation outcomes, providing both empirical richness and contextual validity.

The significance of this research is twofold. Academically, it contributes to ongoing discussions on reconciling financial valuation theory with the realities of a knowledge-driven economy. By bridging insights from finance, strategic management, and knowledge economics, the study offers a novel framework that extends beyond narrow accounting proxies to encompass the broader value-creation processes associated with intellectual capital. Practically, the framework provides investors, managers, and policymakers with a structured lens to assess firm value more accurately, thereby reducing information asymmetries and supporting more efficient capital allocation. For instance, venture capitalists evaluating early-stage biotechnology firms, as illustrated by Moderna, may benefit from structured IC indicators that provide clearer signals of innovation potential. Likewise, digital platform companies such as Alphabet and Tencent demonstrate how structural and relational capital can serve as key valuation drivers, offering actionable insights for both investors and regulatory bodies.

This chapter has outlined the background and rationale for the study, identified the limitations of existing valuation models, and articulated the research objectives and methodological approach. The subsequent chapters build upon this foundation: Chapter 2 reviews the literature on intellectual capital and enterprise valuation, highlighting key theoretical debates; Chapter 3 introduces the theoretical framework and explains the methodological design; Chapter 4 presents the findings and discusses their implications; and Chapter 5 concludes by summarizing the contributions, deriving practical lessons, and proposing directions for future research. By systematically addressing the valuation of intellectual capital through theoretical synthesis and case illustration, the study aims to enhance both understanding and application of valuation practices in the emerging knowledge economy.

2. Literature Review

The valuation of enterprises in the knowledge economy has generated extensive scholarly debate, particularly regarding the role of intellectual capital (IC). Traditional financial theories prioritize tangible assets and measurable cash flows, whereas contemporary perspectives emphasize knowledge, innovation, and relational networks as key drivers of competitive advantage. This chapter reviews the literature across three interrelated domains: intellectual capital theory, enterprise valuation methods, and integrative approaches linking intangible assets to financial valuation. Collectively, these strands illuminate both the progress in conceptualizing IC and the persistent limitations that necessitate the development of a new, comprehensive framework.

2.1. Intellectual Capital Theory

Intellectual capital is widely acknowledged as a multidimensional construct, comprising human, structural, and relational capital. Human capital encompasses employee knowledge, creativity, and skills; structural capital includes organizational processes, culture, and intellectual property; and relational capital involves networks, brand reputation, and stakeholder trust. Early models, such as the Skandia Navigator and the Balanced Scorecard, aimed to capture these dimensions, though their operationalization often lacked consistency across different industries [6]. More recent studies have refined IC measurement by moving from static categorizations toward dynamic, ecosystem-based perspectives [7]. Building on this evolution, some research conceptualizes IC as a dynamic capability shaped through continuous learning and interaction within innovation ecosystems [8]. Additional evidence underscores its role in enhancing organizational resilience, enabling firms to adapt effectively during crises, such as the COVID-19 pandemic [9]. Together, these insights highlight the growing recognition of IC as both a measurable asset and a contextual process that evolves with organizational and environmental dynamics.

2.2. Enterprise Valuation Methods

Conventional valuation approaches-including discounted cash flow (DCF), price-to-earnings ratios, and economic value added-remain central to finance, yet their treatment of intangible assets is limited. While DCF models are theoretically robust, they assume that future cash flows can be reliably estimated, a condition often unrealistic for firms whose value depends on uncertain innovation pipelines [10]. Market multiples offer comparability but rely on peer benchmarks that may themselves undervalue IC-intensive companies. Economic value added accounts for the cost of capital but continues to treat intangible investments as expenses, leading to underrepresentation of IC in financial statements. Recent critiques emphasize that such models increasingly diverge from the realities of the digital and knowledge-driven economy. The persistent gap between book and market values in technology firms illustrates how traditional methods fail to capture the performance generated by intangible assets [11]. Furthermore, investors are progressively demanding the disclosure of non-financial indicators-such as innovation output, employee engagement, and stakeholder relationships-as supplements to conventional financial metrics.

2.3. Integrating Intangible Assets and Intellectual Capital

Attempts to integrate IC into valuation frameworks have yielded a variety of hybrid models. The Skandia Navigator and the Intellectual Capital Index operationalized IC indicators alongside financial metrics, while the Balanced Scorecard introduced non-financial performance dimensions into strategic evaluation. Nevertheless, these models have been criticized for being overly descriptive or insufficiently connected to financial outcomes. More recent approaches strive to bridge this gap by aligning IC metrics with value creation processes. For instance, empirical studies have developed hybrid

evaluation indices that combine human, structural, and relational capital to enhance measurement accuracy [12]. Other studies indicate that IC and its components substantially influence financial performance [13]. However, heterogeneity across industries and limited disclosure continue to constrain full comparability.

Overall, the literature demonstrates both conceptual advancement and methodological limitations. IC theory has progressed from static categorizations to a dynamic capability perspective, yet valuation methodologies still struggle to capture intangibles adequately. Hybrid models show promise, but they lack universal acceptance or standardized application. Their limitations are threefold: first, they often lack explicit financial linkages, presenting IC metrics descriptively rather than embedding them into valuation processes; second, their indicators are fragmented and difficult to quantify consistently across firms and industries, reducing comparability; and third, their applicability is frequently context-specific, limiting generalizability and acceptance in capital markets. These shortcomings underscore the need for a more systematic framework that not only identifies IC dimensions but also explicitly connects them to value creation mechanisms and measurable valuation outcomes. By synthesizing insights from IC theory, traditional financial valuation, and hybrid approaches, the present study seeks to develop a model that combines conceptual rigor with practical relevance, thereby enhancing understanding of enterprise value in the knowledge economy.

3. Theoretical Framework and Methodology

The integration of intellectual capital (IC) into enterprise valuation requires a coherent theoretical foundation and a rigorous methodological design. This chapter presents the conceptual framework underpinning the study, introduces the analytical model, and explains the methodological approach employed to synthesize insights and derive findings. By integrating perspectives from strategic management, knowledge economics, and finance, the framework positions IC as a critical driver of value creation in the knowledge economy.

3.1. Theoretical Foundations

Two complementary theories form the foundation of this study: the knowledge-based view (KBV) and the resource-based view (RBV). The KBV emphasizes knowledge as the most strategically significant resource, suggesting that firms exist primarily to acquire, integrate, and expand knowledge. Within this perspective, intellectual capital constitutes the foundation of competitive advantage, embedded in individuals, organizational systems, and networks [14]. The RBV extends this logic by evaluating resources based on their value, rarity, inimitability, and non-substitutability (VRIN). From this standpoint, IC represents a distinctive resource bundle that drives firm heterogeneity and explains performance differentials [15].

Integrating KBV and RBV provides a dual lens: the KBV highlights the centrality of knowledge flows and innovation, while the RBV underscores the strategic conditions under which IC generates sustainable competitive advantage. This synthesis enables IC to be conceptualized not merely as a stock of intangible assets but also as a dynamic capability that adapts to technological and market shifts.

Building on these theoretical premises, the dimensions of intellectual capital can be systematically derived. From the knowledge-based view, knowledge manifests in three forms: embodied in individuals as human capital, codified in organizational routines and systems as structural capital, and externalized through networks and stakeholder relations as relational capital. The resource-based view further clarifies why these dimensions matter, as each can be evaluated against the VRIN criteria: human expertise as a source of innovation, structural routines as durable and replicable assets, and relational networks as rare and inimitable advantages. Together, these perspectives

provide a conceptual basis for distinguishing the three pillars of IC that underpin the analytical model.

3.2. Analytical Model

Building on this foundation, the study proposes a conceptual framework linking IC components to valuation outcomes. The framework is structured around three pillars: human capital, structural capital, and relational capital. Human capital drives innovation and problem-solving capacity; structural capital enhances scalability and efficiency through organizational processes, intellectual property, and culture; relational capital generates trust and market access, shaping revenue potential and customer retention. As illustrated in Figure 1, these three forms of capital interact through value creation mechanisms to produce both financial and non-financial valuation outcomes, offering a holistic model for assessing enterprise value in the knowledge economy.

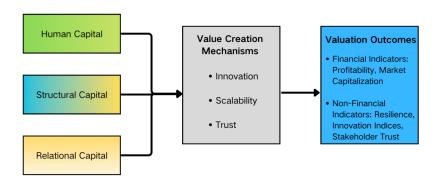


Figure 1. Conceptual Framework for Integrating Intellectual Capital into Enterprise Valuation.

Note. Human, structural, and relational capital flow into value creation mechanisms, innovation capacity, scalability, and market access, culminating in enterprise valuation outcomes that combine financial and non-financial indicators.

3.3. Methodological Approach

This study employs a qualitative, case-informed research design that integrates literature synthesis with illustrative case analysis. The first stage involves a systematic review of scholarship published between 2023 and 2025, establishing the theoretical foundation for constructing an integrative framework and identifying gaps in existing models.

The second stage entails comparative framework analysis, critically evaluating approaches such as the Skandia Navigator, Balanced Scorecard, and Intellectual Capital Index. Their strengths and weaknesses are assessed against the proposed model to demonstrate its contribution in linking intangible resources to valuation.

The third stage involves case illustration. To contextualize the framework, three knowledge-intensive industries are examined: biotechnology, artificial intelligence, and digital platforms. For instance, Moderna's market valuation surged during the COVID-19 pandemic not due to tangible assets but because of its human capital, including world-class researchers and R&D collaborations, which enabled breakthrough innovations. Similarly, Alphabet demonstrates the role of structural capital: proprietary search algorithms, data infrastructures, and intellectual property underpin its persistent valuation premium. Tencent exemplifies relational capital, where the WeChat ecosystem generates trust, network effects, and customer loyalty, translating into market dominance.

As shown in Figure 2, the research process proceeds sequentially from literature synthesis to framework comparison and case illustration, culminating in the development of an integrated IC-inclusive valuation framework.

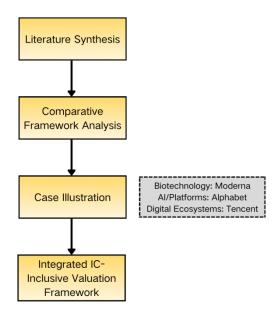


Figure 2. Research Process.

Note. The process begins with literature synthesis, proceeds through framework comparison, and culminates in case illustration, leading to the integrated IC-inclusive valuation framework.

3.4. Justification of Methodology

The case-informed methodology reflects the complexity inherent in intellectual capital. Quantitative proxies risk oversimplifying IC, whereas illustrative cases enable deeper exploration of how IC dimensions manifest in valuation. By drawing on Moderna, Alphabet, and Tencent, the analysis demonstrates the practical relevance of the framework across diverse industries. These cases provide contextual evidence of how IC contributes to enterprise value, bridging theoretical insights with observable market outcomes and validating the applicability of the proposed model.

4. Findings and Discussion

4.1. Human Capital as a Driver of Innovation and Valuation

Human capital is consistently recognized as the most immediate driver of enterprise value. The case of Moderna vividly illustrates this: prior to the COVID-19 pandemic, the company held relatively modest tangible assets, yet its team of scientists and partnerships with research institutions enabled rapid vaccine development. This innovation capability substantially increased Moderna's market capitalization, demonstrating that investor perceptions are shaped more by the quality of human capital than by existing cash flows. Traditional DCF models would undervalue such firms, as they fail to capture the uncertainty and transformative potential inherent in human expertise. This case underscores the importance of integrating human capital indicators-such as scientific expertise, R&D productivity, and employee retention-into valuation frameworks.

4.2. Structural Capital and the Scalability of Knowledge

Structural capital explains how knowledge is institutionalized into scalable organizational systems. Alphabet (Google) provides a compelling example: its proprietary algorithms, machine learning infrastructure, and extensive data assets constitute structural capital that drives sustained revenue generation. Unlike human expertise, which is portable, structural capital remains embedded in organizational routines and technologies, ensuring long-term resilience. The valuation gap between Alphabet's book value and market capitalization demonstrates how investors reward

these intangible assets. Recent evidence indicates that robust structural capital narrows valuation gaps by signaling durable competitive advantage. The Alphabet case highlights that structural capital must be explicitly incorporated into valuation models to avoid underestimating scalability and operational efficiency.

4.3. Relational Capital and Market Access

Relational capital influences valuation by shaping market access, legitimacy, and customer loyalty. Tencent's WeChat ecosystem exemplifies how network effects and brand trust generate value beyond immediate financial returns. Despite intense competition, Tencent maintains market leadership because its relational capital fosters user engagement and ecosystem partnerships, spanning payments, e-commerce, and gaming. Evidence from Tencent's IPO and subsequent market performance demonstrates that investors place a premium on strong relational networks and customer loyalty. These findings reinforce the view that relational capital provides rare, inimitable advantages that traditional accounting methods fail to capture. Consequently, relational capital must be explicitly modeled as both a market signal and a financial driver.

4.4. Comparative Insights and Theoretical Implications

Integrating case evidence enhances the explanatory power of the IC-inclusive framework. As shown in Table 1, a comparison of traditional valuation models with IC-inclusive approaches reveals that, in all three cases-Moderna, Alphabet, and Tencent-traditional methods underestimated enterprise value by excluding or inadequately representing human, structural, and relational capital. In contrast, the IC-inclusive framework systematically links these dimensions to measurable outcomes.

Table 1. Comparison of Traditional Valuation Models and IC-Inclusive Framework.

Intellectual Capital Dimension	Traditional Valuation Models (DCF, Multiples, EVA)	IC-Inclusive Framework
Human Capital (knowledge, skills, expertise)	Typically excluded or proxied indirectly through R&D expenses or labor costs; employee expertise rarely quantified in valuation.	education innovation output
Structural Capital (processes, IP, data, routines)	Often collapsed into "goodwill" or book value adjustments; intellectual property treated only when legally protected and monetized.	Incorporated through organizational processes, patents, proprietary algorithms, and digital infrastructure as direct contributors to scalability and efficiency.
Relational Capital (brand, trust, networks)	Rarely valued directly; brand equity sometimes recognized in acquisition premiums but inconsistent across accounting standards.	Explicitly assessed through customer loyalty indices, ecosystem partnerships, stakeholder trust measures, and brand reputation metrics.
Overall Impact on Valuation	Produces systematic undervaluation of knowledge-intensive firms, with significant gaps between book and market value.	Provides a holistic assessment by linking IC dimensions to measurable financial outcomes and long-term growth potential.

Note. Indicators in the IC-inclusive framework are grounded in the illustrative cases: Moderna's scientific expertise and R&D collaborations exemplify human capital; Alphabet's proprietary

algorithms and data infrastructures illustrate structural capital; and Tencent's WeChat ecosystem highlights relational capital through customer loyalty and ecosystem partnerships.

The findings reinforce the KBV by demonstrating that human and structural capital drive continuous innovation, and they validate the RBV by showing that relational capital delivers rare, inimitable advantages. Together, these insights emphasize the necessity of a holistic framework that integrates IC into enterprise valuation.

4.5. Practical Challenges and Application of the Framework

While the IC-inclusive framework demonstrates greater explanatory power than traditional models, its practical implementation presents several challenges. The Moderna case shows that while patent counts can indicate innovation potential in biotechnology, they are less applicable in digital industries, where algorithms and user data underpin competitive advantage. The Alphabet case highlights disclosure inconsistencies, as many structural capital elements remain proprietary and opaque to investors. The Tencent case illustrates the dynamic nature of relational capital, which evolves with user behavior and technological change. Capturing such dynamism requires longitudinal models rather than static assessments, underscoring the need for adaptive measurement approaches that account for the evolving nature of IC.

5. Conclusion

This study aimed to address the persistent gap between conventional valuation models and the realities of the knowledge economy by developing and applying an intellectual capital (IC)-inclusive framework. By integrating insights from the knowledge-based view (KBV) and the resource-based view (RBV), the research advances a multidimensional model linking human, structural, and relational capital to enterprise valuation through the mechanisms of innovation, scalability, and trust. Unlike traditional models, which treat intangibles as residual or secondary, this framework establishes explicit causal pathways demonstrating how IC contributes to both financial and non-financial value creation.

The contribution of this study is threefold. First, it provides theoretical innovation by synthesizing KBV and RBV into a unified perspective, conceptualizing IC as both a dynamic capability and a strategic resource bundle. Second, it demonstrates practical relevance through illustrative cases: Moderna exemplifies the centrality of human capital in driving breakthrough innovation, Alphabet highlights how structural capital underpins scalability and efficiency, and Tencent illustrates how relational capital fosters trust, network effects, and market legitimacy. Together, these cases validate the framework and demonstrate its explanatory power across knowledge-intensive industries. Third, the study bridges finance and knowledge management, offering a structured lens for investors, managers, and policymakers to reduce information asymmetries and capture intangible drivers of value.

Nonetheless, challenges remain. IC measurement is context-dependent, disclosure practices are uneven, and intangible assets evolve dynamically as technologies, markets, and networks change. These limitations constrain the immediate universality of the framework. Accordingly, it should be viewed as a conceptual guide and research direction rather than a definitive valuation tool. Future research should empirically validate IC indicators across industries, adopt longitudinal designs to capture dynamics, and leverage interdisciplinary approaches, including data science and organizational studies, to refine operationalization.

In conclusion, by positioning intellectual capital at the center of valuation, this study reframes the understanding of enterprise value in the knowledge economy. It enriches academic discourse while providing a robust conceptual foundation for future empirical research and practical application in contexts where intangible assets increasingly define competitiveness and growth potential.

References

- 1. E. Akkas, and M. Asutay, "The impact of intellectual capital formation and knowledge economy on banking performance: a case study of GCC's conventional and Islamic banks," *Journal of Financial Reporting and Accounting*, vol. 21, no. 5, pp. 1149-1170, 2023. doi: 10.1108/jfra-08-2021-0251
- 2. W. U. Rehman, M. Nadeem, O. Saltik, S. Degirmen, and F. Jalil, "Investing in knowledge assets: a novel approach for measuring national intellectual capital index in emerging economies," *Journal of Intellectual Capital*, vol. 25, no. 2/3, pp. 535-558, 2024. doi: 10.1108/jic-07-2023-0155
- V. Ievdokymov, T. Ostapchuk, S. Lehenchuk, D. Grytsyshen, and G. Marchuk, "ANALYSIS OF THE IMPACT OF INTANGIBLE ASSETS ON THE COMPANIES'MARKET VALUE," Natsional'nyi Hirnychyi Universytet. Naukovyi Visnyk, no. 3, pp. 164-170, 2020.
- 4. L. J. Zane, and M. A. Tribbitt, "Examining the influence of specific IC elements on alliance formation of new ventures," *Journal of Intellectual Capital*, vol. 25, no. 1, pp. 38-59, 2024. doi: 10.1108/jic-07-2022-0155
- 5. A. K. Singhania, and N. M. Panda, "Intellectual capital disclosure and firm performance in India: unfolding the Fourth Industrial Revolution," *Journal of Intellectual Capital*, vol. 26, no. 2, pp. 380-403, 2025. doi: 10.1108/jic-05-2024-0145
- 6. R. Kowalak, "The Balanced Scorecard for a Museum as a Non-Profit Organisation," Sustainable Performance in Business Organisations and Institutions: Measurement, Reporting and Management, vol. 107, 2023. doi: 10.15611/2023.83.1.06
- 7. G. Secundo, R. Lombardi, J. Dumay, and J. Guthrie AM, "Reflecting on intellectual capital measurement and management in European universities," *Meditari Accountancy Research*, vol. 31, no. 6, pp. 1827-1845, 2023.
- 8. L. Marinelli, S. Bartoloni, F. Pascucci, G. L. Gregori, and M. Farina Briamonte, "Genesis of an innovation-based entrepreneurial ecosystem: exploring the role of intellectual capital," *Journal of Intellectual Capital*, vol. 24, no. 1, pp. 10-34, 2023. doi: 10.1108/jic-09-2021-0264
- 9. M. E. Stratone, and E. M. Vatamanescu, "Intellectual capital management as a catalyst for organizational agility and performance in post-COVID-19 Romanian SMEs," *Kybernetes*, 2024.
- 10. M. d'Amato, and G. Bambagioni, "Discounted Cash Flow Analysis and Prudential Value DCFA Formula," *Aestimum*, vol. 83, pp. 59-68, 2023.
- 11. F. Dong, and J. Doukas, "The role of intangible assets in shaping firm value," *European Financial Management*, 2025. doi: 10.1111/eufm.12547
- 12. C. Liu, Q. Liao, W. Gao, S. Li, P. Jiang, and D. Li, "Intellectual Capital Evaluation Index Based on a Hybrid Multi-Criteria Decision-Making Technique," *Mathematics*, vol. 12, no. 9, p. 1323, 2024. doi: 10.3390/math12091323
- 13. Y. Gao, X. Tian, and J. Xu, "Intellectual capital, board diversity, and firms' financial performance: a complex system perspective," *Systems*, vol. 12, no. 9, p. 363, 2024. doi: 10.3390/systems12090363
- 14. C. Cooper, V. Pereira, D. Vrontis, and Y. Liu, "Extending the resource and knowledge based view: Insights from new contexts of analysis," *Journal of Business Research*, vol. 156, p. 113523, 2023.
- 15. I. ENDIANA, N. N. A. Suryandari, P. D. Kumalasari, N. K. Sunarsih, and K. Sunarwijaya, "Nexus Between Intellectual Capital and Financial Performance: A Competitive Advantage Assessment," *Quality-Access to Success*, vol. 25, no. 203, 2024.

Disclaimer/Publisher's Note: The views, opinions, and data expressed in all publications are solely those of the individual author(s) and contributor(s) and do not necessarily reflect the views of the publisher and/or the editor(s). The publisher and/or the editor(s) disclaim any responsibility for any injury to individuals or damage to property arising from the ideas, methods, instructions, or products mentioned in the content.