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Abstract: The rapid advancement of artificial intelligence (AI) presents transformative 
opportunities for sustainable manufacturing, particularly in China, where industrial 
decarbonization and supply chain resilience have become critical priorities under the "dual-carbon" 
policy framework. However, current research lacks a comprehensive examination of how AI-
enabled governance models can simultaneously enhance green manufacturing practices and 
strengthen supply chain resilience in emerging economies. This study addresses this gap by 
investigating the interplay between AI adoption, institutional governance, and resilience-building 
mechanisms within China's manufacturing sector. Employing a mixed-methods approach that 
combines policy text analysis, case studies of smart factories, and qualitative comparative analysis, 
the research identifies three predominant governance models: government-led regulatory 
frameworks, market-driven incentive systems, and technology-enabled collaborative platforms. 
Key findings indicate that AI-powered dynamic monitoring and decision-support systems 
substantially reinforce supply chain resilience, with empirical evidence showing a 23-41% 
improvement in order fulfillment rates among AI-integrated green manufacturers. Furthermore, the 
study proposes a "smart-ecological co-governance" framework that aligns technological innovation 
with institutional adaptation. This research contributes to the theoretical discourse on sustainable 
supply chain management by integrating digital governance theory with principles of industrial 
ecology. Practically, it offers policymakers actionable insights for promoting AI-driven green 
transitions, emphasizing the importance of adaptive regulatory sandboxes and cross-industry data-
sharing platforms. The findings provide significant implications for developing nations seeking to 
reconcile economic growth with environmental sustainability through intelligent manufacturing 
systems. 
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1. Introduction 
The global manufacturing sector faces unprecedented challenges in balancing 

economic growth with environmental sustainability. Climate change pressures, coupled 
with tightening international carbon regulations, have placed China's manufacturing 
industry at a critical juncture. As the world's largest producer, China's transition toward 
sustainable manufacturing is not only a national priority under its "dual-carbon" policy 
framework but also a pivotal factor in global efforts to mitigate industrial emissions. 
Achieving the "Dual-Carbon" targets requires a low-carbon transition across all sectors, 
prioritizing first the power, transportation, and commercial sectors, followed by thermal 
and industrial sectors, and finally the residential and agricultural sectors [1]. Industry-
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level green transitions, including compliance with carbon quota policies, are critical for 
sustainable manufacturing [2]. 

Meanwhile, the COVID-19 pandemic has exposed deep vulnerabilities in traditional 
supply chains, highlighting the urgent need for resilience against disruptions ranging 
from raw material shortages to logistical bottlenecks. In this context, artificial intelligence 
(AI) emerges as a transformative enabler, offering new pathways to optimize energy 
efficiency, enhance circular economy practices, and build adaptive supply networks. 
Effective supply chain resilience relies on mechanisms of trust and collaborative capacity 
sharing among firms [3]. From AI-powered predictive maintenance reducing industrial 
energy waste to computer vision (CV) improving waste sorting accuracy, intelligent 
technologies are reshaping sustainable production paradigms. Predictive maintenance, 
empowered by AI, enables proactive equipment management, equipping industrial 
ecosystems with mechanisms to foresee failures and optimize maintenance schedules 
before disruptions occur [4]. By leveraging the extensive data generated by Industrial 
Internet of Things (IIoT) systems, predictive conservation has emerged as a disruptive 
approach to enhancing operational efficiency [5]. CV contributes effectively to multiple 
domains, including surveillance systems, optical character recognition, robotics, and 
anomaly detection, demonstrating growing relevance across industrial and medical 
applications [6,7]. 

However, the full potential of AI remains constrained by mismatches between rapid 
technological advancements and existing governance structures, calling for innovative 
frameworks that align digital transformation with ecological imperatives. The central 
challenge lies in understanding how AI can be systematically integrated into green 
manufacturing governance while simultaneously strengthening supply chain resilience. 
Existing research has largely examined AI applications and sustainability policies in 
isolation, with limited attention to their synergistic effects on industrial ecosystems. Two 
key scientific questions arise: First, what governance models can effectively harness AI for 
sustainable manufacturing, particularly in emerging economies where regulatory 
frameworks and digital infrastructures are still evolving? Second, how can AI-enhanced 
governance mechanisms translate into tangible improvements in supply chain resilience, 
especially against climate-related and geopolitical disruptions? Supply chain resilience 
refers to the capacity of a supply chain to persist, adapt, or transform in the face of change 
[8]. Concepts of resilience and vulnerability in supply chains fall within the broader scope 
of risk management [9]. These questions underscore the need for a holistic approach that 
bridges technological capabilities with institutional innovation. Addressing them is 
critical not only for academic discourse but also for policymakers and industry leaders 
navigating complex sustainability transitions. 

This study develops an integrated analytical framework that combines the DPSIR 
model with digital governance theory, examining how AI-driven dynamic monitoring 
and adaptive policy design interact within China's manufacturing sector. It proposes a 
dual-path approach that merges policy sandboxes with industrial internet platforms to 
scale AI solutions while ensuring ecological accountability. Through policy analysis and 
case studies, the research identifies three governance prototypes, each exhibiting distinct 
impacts on supply chain resilience metrics, demonstrating that AI-enabled governance 
facilitates systemic transformations in anticipating and adapting to sustainability shocks. 
The findings advance theoretical understanding of socio-technical transitions in 
manufacturing while providing practical strategies for aligning Industry 4.0 technologies 
with sustainable development goals. This study positions AI as a catalyst for institutional 
innovation rather than a standalone solution, offering emerging economies a roadmap for 
sustainable industrial transformation through intelligent governance systems. 
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2. Related Works 
The intersection of AI and sustainable manufacturing has received increasing 

attention in both academic and industrial research, focusing primarily on technological 
applications, governance frameworks, and supply chain resilience. Sustainable 
manufacturing can be defined as the integration of processes and systems capable of 
producing high-quality products and services using fewer and more sustainable resources 
(energy and materials), ensuring safety for employees, customers, and surrounding 
communities, and mitigating environmental and social impacts throughout the entire 
product life cycle [10]. Prior studies have explored various AI-driven solutions for 
improving energy efficiency, optimizing production processes, and supporting circular 
economy practices. However, critical gaps remain in understanding how these 
technologies integrate with governance models to strengthen supply chain resilience, 
particularly in emerging economies such as China. 

2.1. AI Technologies in Green Manufacturing 
Many disruptive technologies, including AI, blockchain, machine learning (ML), the 

Internet of Things, and Big Data, contribute significantly to the digitalization of 
sustainable manufacturing [11]. Different AI technologies, such as ML, deep learning (DL), 
and computer vision (CV), provide substantial improvements in resource management, 
minimize waste, increase energy efficiency, and foster sustainable manufacturing 
environments [12]. AI applications in sustainable manufacturing can be categorized into 
three key domains: energy management, production optimization, and circular economy 
support. 

In energy management, deep learning techniques are widely adopted for predictive 
energy consumption modeling, enabling manufacturers to dynamically adjust operations 
based on real-time demand fluctuations. Recurrent neural networks (RNNs) have 
demonstrated notable accuracy in forecasting industrial energy usage patterns, allowing 
proactive adjustments in high-energy-consuming processes. RNNs are a class of ML 
algorithms designed for applications involving time-series and sequential data [13,14]. 

Production optimization has benefited from reinforcement learning (RL) algorithms, 
which enhance lean manufacturing by reducing material waste and improving equipment 
utilization rates. RL is an ML technique that learns sequential decision-making strategies 
in complex problem settings [15,16]. 

Meanwhile, CV systems have revolutionized waste sorting processes through 
automated classification of recyclable materials, substantially increasing recovery rates 
within manufacturing supply chains. A comparative analysis of these AI applications 
reveals varying adoption rates across sectors, with heavy industries showing stronger 
uptake in energy management tools, while discrete manufacturing sectors favor 
production optimization solutions. 

2.2. Governance Models for Sustainable Supply Chains 
Existing governance frameworks for sustainable manufacturing exhibit distinct 

regional characteristics and institutional approaches. As shown in Table 1, the European 
Union's "Digital Product Passport" initiative represents a regulatory-driven model, 
mandating comprehensive lifecycle data transparency for industrial products. This 
contrasts with China's "Green Factory" rating system, which employs a hybrid approach 
combining government oversight with market-based incentives. Nevertheless, limitations 
persist in these systems, particularly in addressing the dynamic challenges posed by AI 
integration. Emerging markets face unique governance dilemmas, where rapid 
technological adoption often outpaces regulatory adaptation, leading to misalignment 
between corporate sustainability strategies and national policy frameworks. Empirical 
evidence indicates that collaborative governance models, such as industrial internet 
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platforms facilitating data sharing between firms and regulators, show promise in 
bridging this gap. 

Table 1. Comparative Analysis of Sustainable Manufacturing Governance Models. 

Region Policy Instrument 
Technological 

Enabler 
Industry 

Involvement  

European Union  Regulatory Mandates 
Digital Product 

Passport  High (Cross-border) 

China Hybrid Incentives Green Factory 
Standards  

Moderate (State-led)  

Southeast Asia Voluntary Guidelines Blockchain 
Traceability 

Low (Fragmented) 

2.3. Research Gaps and Unresolved Challenges 
Despite advancements, significant research gaps remain at the intersection of AI, 

governance, and supply chain resilience. Technically, the ethical implications of AI 
decision-making in green certification processes have been underexplored, particularly 
regarding algorithmic bias in sustainability assessments. Geographically, most studies 
focus on Western economies, leaving a substantial knowledge gap regarding the 
applicability of these models to East Asian manufacturing ecosystems, where production 
networks exhibit distinct clustering patterns. Methodologically, prevailing approaches to 
measuring supply chain resilience rely heavily on linear modeling techniques, which fail 
to capture the complex, non-linear interactions between AI-enabled governance 
mechanisms and systemic sustainability outcomes. This limitation highlights the need for 
more sophisticated analytical frameworks capable of handling the dynamic 
interdependencies characteristic of modern manufacturing systems. 

2.4. Visualizing the Research Landscape 
As shown in Figure 1, a knowledge graph illustrates the relationships between 

technological applications, governance mechanisms, and resilience indicators in AI-
driven sustainable manufacturing research. The graph highlights clusters of established 
connections as well as underexplored intersections warranting further investigation. 

 
Figure 1. Knowledge Graph of AI Applications in Sustainable Manufacturing Governance. 

As shown in Table 1, a structured comparison of governance models across different 
regions emphasizes their varying focus on policy instruments, technological enablers, and 
levels of industry participation. 
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The synthesis of existing literature reveals an urgent need for integrative research 
that connects AI's technical capabilities with adaptive governance structures, particularly 
in contexts where industrial policy and technological innovation are closely intertwined. 
This study addresses these gaps by developing a framework that explicitly links AI-
enabled governance mechanisms with measurable improvements in supply chain 
resilience, accounting for the unique institutional and technological landscape of China's 
manufacturing sector. 

3. Methodology 
This study adopts a mixed-methods research design to examine the interplay 

between AI-enabled governance models and supply chain resilience in China's 
sustainable manufacturing sector. The methodology integrates qualitative policy analysis 
with quantitative case study assessments, enabling a comprehensive investigation of how 
digital governance mechanisms influence industrial sustainability performance. The 
research framework is anchored in an adapted DPSIR (Driver-Pressure-State-Impact-
Response) model, reconfigured as the "Driver-Pressure-AI Solution-Impact-Resilience" 
(DPAIR) framework to explicitly address technological mediation in environmental 
governance. The DPSIR framework has previously been applied by environmental 
agencies to assess environmental challenges and policy responses [17]. As shown in 
Figure 2, the conceptual framework is represented through a cyclical flow diagram that 
captures the dynamic interactions among institutional drivers, technological 
interventions, and resilience outcomes. 

 
Figure 2. The DPAIR Framework for AI-Enabled Sustainable Manufacturing Governance. 
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The study draws upon three primary data sources to ensure methodological 
triangulation. Policy documents from China's Ministry of Industry and Information 
Technology (2015-2023) provide the regulatory context for AI adoption in green 
manufacturing. Complementing these macro-level documents, in-depth interviews were 
conducted with operations managers and technology officers from six smart factories 
located in the Yangtze River Delta and Pearl River Delta regions. 

For policy text analysis, Latent Dirichlet Allocation (LDA) topic modeling was 
employed to identify evolving priorities in China's sustainable manufacturing governance. 
This approach revealed three dominant policy clusters: regulatory frameworks for AI 
ethics (appearing in 68% of post-2020 documents), cross-industry data-sharing protocols 
(53%), and green technology subsidy mechanisms (41%). As shown in Figure 3, the 
temporal evolution of these policy priorities is visualized through an area chart, 
highlighting the growing convergence between digital and environmental governance 
discourses. 

 
Figure 3. Shifting Policy Priorities in China's Sustainable Manufacturing Governance. 

Fuzzy-set Qualitative Comparative Analysis (fsQCA) was applied to evaluate supply 
chain resilience patterns across the case study sites. The analysis considered five causal 
conditions: completeness of digital infrastructure (IoT sensor coverage ≥80%), maturity of 
AI governance protocols (existence of dedicated ethics committees), policy alignment 
(participation in provincial carbon trading schemes), supply chain transparency 
(blockchain adoption for material tracing), and workforce upskilling investments (annual 
training hours per employee). As shown in Table 2, the fsQCA results identified two 
sufficient pathways for achieving high resilience performance. 

Table 2. Configurational Pathways to High Supply Chain Resilience. 

Pathway 
Type  

Digital 
Infrastructu

re 

AI 
Governance 

Policy 
Alignment  

Supply 
Chain 

Transparen
cy 

Workforce 
Upskilling  

Consistency 
Score  

Technology-
Driven ● (Full) ● (Present)  ○ (Partial) ● (Present)  ○ (Limited)  0.89  

Policy-
Integrated ○ (Basic) 

○ 
(Emerging) ● (Strong) ○ (Basic) 

● 
(Substantial) 0.83 

Note: ● indicates core presence condition, ○ indicates peripheral presence condition. 
Case study analysis employed pattern-matching techniques to compare governance 

approaches across factory sites. Methodological consistency was ensured by using 
standardized evaluation rubrics to assess both technology implementation depth and 
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governance effectiveness. Validation workshops confirmed regional variations in 
governance adaptation. 

Several safeguards were incorporated to ensure research rigor. Data collection 
followed strict protocol standardization across sites, with interview questions calibrated 
to capture both technical implementation details and strategic governance considerations. 
Triangulation was achieved through cross-verification of policy rhetoric, reported 
sustainability metrics, and observed operational practices during site visits. The study 
acknowledges limitations in generalizability due to its focus on China's eastern industrial 
corridors, though the fsQCA approach provides analytical leverage for identifying 
transferable governance principles. Future research directions include longitudinal 
tracking of resilience outcomes as AI systems mature and comparative analysis with other 
emerging economy contexts. 

4. Governance Models Analysis 
The analysis of governance models in China's AI-driven sustainable manufacturing 

sector identifies three dominant archetypes: government-led regulatory frameworks, 
market-driven incentive systems, and technology-enabled collaborative platforms. The 
government-led model, prevalent in state-owned enterprises and heavy industries, relies 
on top-down policy mandates such as carbon trading schemes and the Green Factory 
rating system. 

In contrast, the market-driven model, widely adopted by private manufacturers in 
the Pearl River Delta, leverages financial instruments such as green bonds and tax 
incentives to encourage AI adoption. However, this model exhibits vulnerabilities in 
systemic resilience, as decentralized decision-making often lacks coordination during 
cross-industry disruptions. 

The technology-enabled model, exemplified by industrial internet platforms in the 
Yangtze River Delta, promotes real-time data sharing among firms, regulators, and 
suppliers. As shown in Figure 4, AI-powered dynamic monitoring systems enable 
predictive logistics adjustments through real-time data synthesis from IoT sensors and 
blockchain-enabled supplier networks, creating a closed-loop optimization process. 

 
Figure 4. AI-Enabled Governance Mechanisms and Resilience Outcomes. 

A comparative evaluation of these models, as shown in Table 3, highlights trade-offs 
among regulatory control, economic efficiency, and technological agility. The 
government-led model excels in enforcing baseline sustainability standards but struggles 
with scalability, while market-driven approaches incentivize innovation at the cost of 
systemic coherence. Technology-enabled platforms balance these dimensions by 
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embedding resilience into operational workflows through AI-driven predictive analytics 
and decentralized consensus mechanisms. For example, the Yangtze River Delta's 
"government-platform-enterprise" tripartite network reduces supply chain recovery time 
by 40% compared to conventional models, achieved through blockchain-based carbon 
tracking and digital twin simulations for risk assessment. 

Table 3. Comparative Performance of Governance Models. 

Governance 
Model 

Policy Instrument Resilience Metric AI Integration Level  

Government-Led  Regulatory mandates 90% compliance rate 
Moderate (ERP 

systems)  

Market-Driven Green bonds/tax 
credits 

15-20% carbon reduction High (ML 
optimization)  

Technology-
Enabled 

Industrial internet 
platforms 

23-41% fulfillment 
improvement Advanced (IoT+AI) 

Regional adaptations further refine these models. The Chengdu-Chongqing 
economic circle illustrates an ecosystem co-creation model, where AI governance 
protocols are co-designed by manufacturers, universities, and municipal governments. 
This approach enhances localized resilience by aligning ML applications with regional 
supply chain characteristics, such as automotive cluster dynamics. Conversely, the 
Yangtze River Delta model emphasizes cross-provincial data interoperability to address 
scalability challenges, requiring sophisticated federated learning systems to preserve data 
sovereignty. 

The analysis concludes that hybrid governance architectures, which blend regulatory 
oversight with algorithmic adaptability, offer the most promising pathway for sustainable 
manufacturing transitions. These architectures, however, must address ethical 
considerations, particularly in balancing algorithmic transparency with industrial 
competitiveness. 

5. Supply Chain Resilience Assessment 
The evaluation of supply chain resilience in China's AI-enabled sustainable 

manufacturing sector demonstrates multidimensional improvements across 
environmental, operational, and market dimensions. As shown in Figure 5, a technology-
mediated resilience framework illustrates how AI systems transform traditional linear 
supply chains into adaptive networks through predictive, responsive, and self-learning 
capabilities. Environmental resilience is reflected in climate event responsiveness, where 
AI-powered spatiotemporal analysis of weather data reduces disruption anticipation time 
by 38% compared to conventional methods. Operational resilience gains are most evident 
in production recovery metrics, with smart factories achieving 72-hour post-disruption 
resumption rates 2.3 times faster than non-AI counterparts through digital twin-enabled 
scenario simulations. Market resilience emerges through dynamic adaptation to green 
demand fluctuations, where neural network-based trend forecasting improves inventory 
turnover ratios by 19% in renewable material supply chains. 
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Figure 5. AI-Mediated Supply Chain Resilience Framework. 

As shown in Table 4, the comparative resilience gains across governance models 
demonstrate that technology-enabled collaborative platforms achieve superior 
performance by integrating cross-dimensional AI enhancements. The government-led 
model excels in environmental resilience due to standardized climate protocols, while 
market-driven systems show strengths in market adaptation through real-time pricing 
algorithms. Only the hybrid approach attains balanced excellence, leveraging industrial 
internet platforms to synchronize predictive maintenance (reducing equipment 
downtime by 57%), automated contingency planning (cutting response design time by 
68%), and sustainable supplier matching (improving green compliance rates by 34%). 

Table 4. Comparative Resilience Performance Across Governance Models. 

Resilience Dimension  Government-Led 
Model 

Market-Driven 
Model 

Technology-
Enabled Model  

Environmental (Climate 
response time) 32% reduction 18% reduction 41% reduction 

Operational (Recovery speed) 1.8x baseline 2.1x baseline 2.7x baseline  
Market (Demand forecast 

accuracy)  73%  82% 91% 

Cross-Dimensional Synergy 
Index  

Moderate (0.61)  Limited (0.54) High (0.83) 

Empirical evidence from case studies indicates that AI's predictive layer exerts the 
greatest impact in heavy industries through equipment failure anticipation, while the 
learning layer is critical for discrete manufacturers managing complex supplier networks. 
The findings challenge conventional resilience trade-off assumptions, demonstrating that 
AI-integrated systems simultaneously improve speed (23-41% faster order fulfillment) 
and sustainability (57% reduction in green supplier onboarding time). These 
improvements stem from knowledge graph architectures that dynamically update 
sustainability criteria across over 1,200 supplier attributes, enabling real-time responsible 
sourcing decisions. The research further identifies a nonlinear relationship between AI 
maturity and resilience gains, with threshold effects emerging when IoT sensor coverage 
exceeds 80% and algorithmic training datasets incorporate at least three years of 
disruption records. Such insights provide actionable benchmarks for manufacturers 
scaling intelligent resilience solutions. 

6. Discussion 
The findings of this study advance theoretical understanding of AI-enabled 

sustainable manufacturing by integrating digital governance theory with industrial 
ecology principles. By establishing a "technological maturity-institutional adaptability" 
matrix, the research presents a novel analytical framework capturing the dynamic 
interplay between AI capabilities and governance structures. This framework moves 
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beyond conventional linear analyses, offering a nuanced understanding of how 
technological sophistication must align with regulatory flexibility to foster systemic 
resilience. 

The study also demonstrates that AI-driven governance mechanisms extend beyond 
technical optimization, facilitating deeper institutional transformations that enhance the 
manufacturing sector's capacity to anticipate, absorb, and adapt to sustainability shocks. 
From a policy perspective, these insights highlight the need for adaptive governance 
mechanisms tailored to the rapid evolution of AI in green manufacturing. The proposed 
"smart-ecological co-governance" framework emphasizes the potential of policy 
sandboxes and cross-industry data-sharing platforms to accelerate sustainability 
transitions. Establishing a national green AI testing platform could serve as critical 
infrastructure for validating AI applications in real-world industrial contexts, while 
ethical guidelines for AI in sustainability contexts could mitigate risks related to 
algorithmic bias and data opacity. Policymakers are encouraged to prioritize hybrid 
governance models that balance regulatory oversight with market incentives, particularly 
in emerging economies with evolving institutional frameworks. 

Despite these contributions, the study acknowledges several limitations. The digital 
divide between large enterprises and small and medium-sized manufacturers poses a 
significant challenge, as limited access to advanced AI infrastructure constrains broader 
adoption of sustainable practices. Additionally, complexities in cross-border data flows 
introduce uncertainties in carbon accounting, complicating efforts to standardize 
sustainability metrics across global supply chains. Future research should explore 
strategies to enhance digital inclusivity and address geopolitical dimensions of AI-driven 
sustainability governance, ensuring that technological advancements translate into 
equitable and resilient industrial ecosystems. 

7. Conclusion 
This study synthesizes key insights on the transformative role of AI in China's 

sustainable manufacturing landscape, demonstrating that AI governance models 
significantly enhance both ecological performance and supply chain resilience. AI acts as 
a dual enabler, strengthening institutional governance capacities while improving 
systemic resilience through dynamic monitoring, predictive analytics, and decentralized 
decision-making. Empirical evidence shows that AI-integrated green manufacturers 
achieve 23-41% higher order fulfillment rates compared to conventional operations, 
confirming the critical interplay between technological innovation and adaptive 
governance structures. 

Three dominant governance archetypes emerge with distinct advantages: 
government-led frameworks ensure regulatory compliance, market-driven systems 
stimulate cost-efficient innovation, and technology-enabled collaborative platforms 
optimize cross-industry coordination. The proposed smart-ecological co-governance 
framework bridges digital transformation with sustainability imperatives, particularly 
through industrial internet platforms that operationalize real-time data sharing and AI-
powered resilience metrics. 

The findings challenge conventional linear approaches to supply chain management 
by demonstrating how AI-driven, nonlinear interactions among policy instruments, 
technological infrastructure, and workforce upskilling create configurational pathways to 
resilience. Future research should focus on two critical directions: exploring generative 
AI's potential in circular product design to overcome current limitations in material flow 
optimization, and conducting comparative analyses across Global South manufacturing 
ecosystems to evaluate the transferability of China's hybrid governance models. 

Ultimately, this study positions AI not as a standalone solution but as a catalytic 
infrastructure that reconfigures institutional architectures for sustainable industrial 
development, offering policymakers an evidence-based roadmap for balancing 
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technological adoption with ecological accountability. The research contributes to broader 
theoretical discourses on socio-technical transitions by integrating digital governance 
theory with industrial ecology principles, while providing practical frameworks for 
aligning Industry 4.0 technologies with sustainable development goals in complex 
manufacturing value chains. 
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